IYRC PAPER ARCHIVE
  • HOME
  • PAST CONFERENCES
    • IYRC Fall 2024 >
      • Authors
    • IYRC Spring 2024 >
      • Authors
    • IYRC Fall 2023 >
      • Authors
    • IYRC Spring 2023 >
      • Authors
    • IYRC Fall 2022 >
      • Authors
    • IYRC Fall 2021 >
      • Authors
    • IYRC Spring 2021 >
      • Authors
    • IYRC 2020 >
      • Authors
    • IYRC 2019 >
      • Authors
    • IYRC 2018 >
      • Authors
  • PAST SUMMER PROGRAMS
    • IYRC Summer 2024
    • IYRC Summer 2023
    • IYRC Summer 2022
    • IYRC Summer 2021
  • IYRC HOME PAGE

SECRNN: Convolutional Recurrent Network for Spatial Audio Event Recognition

by Max Xiao
Category: Computer Science
Abstract – The SECRNN model for gunshot audio event detection uses CNNs and RNNs to extract spatial and temporal features respectively, resulting in superior performance compared to state-of-the-art models. It utilizes STFT without Mel Scale spectrograms to retain high-signal acoustic features and reduce spectral leakage. The proposed inverse frequency weighting approach addresses class imbalance, reducing false positives and negatives. The SECRNN model's high recall and precision make it ideal for real-life gunshot detection scenarios, providing rapid response times for short-duration and high-intensity audio events while minimizing false alarms.
  • PAPER
  • PRESENTATION VIDEO
<
>
​
  • HOME
  • PAST CONFERENCES
    • IYRC Fall 2024 >
      • Authors
    • IYRC Spring 2024 >
      • Authors
    • IYRC Fall 2023 >
      • Authors
    • IYRC Spring 2023 >
      • Authors
    • IYRC Fall 2022 >
      • Authors
    • IYRC Fall 2021 >
      • Authors
    • IYRC Spring 2021 >
      • Authors
    • IYRC 2020 >
      • Authors
    • IYRC 2019 >
      • Authors
    • IYRC 2018 >
      • Authors
  • PAST SUMMER PROGRAMS
    • IYRC Summer 2024
    • IYRC Summer 2023
    • IYRC Summer 2022
    • IYRC Summer 2021
  • IYRC HOME PAGE