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Abstract - This project aims to explore the basis of an 

enhanced way to deliver spatial audio in an observer’s 

horizon using acoustic modeling in place of low-pass 

filtering, interaural time differences, and simple 

attenuation functions. The approach described in this 

paper determines two interpolating functions, used as 

head related transfer functions (“HRTFs”) which provide 

the illusion of spatial audio. The HRTF is obtained by 

solving the wave and Helmholtz partial differential 

equations. The parameters for the aforementioned 

equations can be adjusted to account for any source and 

observer orientation in any anechoic space. In addition, 

the shape of the observer’s head can be modeled to create 

a personalized HRTF, tailored to the specific observer 

instead of a standard one. The model was able to 

successfully attenuate different frequency intervals and 

phase shift the audio signal for each channel to provide 

sufficient binaural cues to localize sound. Results from 

this implementation, although obtained through 

computationally intensive processes, could potentially be 

extended to virtual reality-based systems which would, in 

theory, provide for a more realistic audio experience, at a 

much lower cost. 
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INTRODUCTION  

 

 As virtual reality systems have matured past their 

infancy stages and serve as a viable medium to deliver 

immersive experiences, there has been an increase in research 

and development of such systems. Although much of the 

recent progress has been focused on enhancing the visual 

aspect, there is indeed an emphasis on refining the audio 

experience by using spatial audio and high-fidelity acoustics 

to provide for more realistic user experience [1, 2]. HRTFs 

are used in these systems to modify audio and recreate the 

acoustic filtering of sound as it propagates. When paired with 

headphones or any binaural audio delivery system, these 

functions can be used to simulate spatial audio by processing 

the audio that is delivered to each channel.  

 

 Since HRTFs are dependent on the geometry of a 

person’s head, torso, and pinnae, they vary significantly 

among individuals. Because of the impracticality of 

determining customized HRTFs with existing experimental 

approaches, most virtual reality systems use generic or 

standard HRTFs. Since the aforementioned variations are left 

unaddressed with generic HRTFs, the user can experience 

unconvincing spatial audio and localization errors [3, 4]. This 

motivates the use of more accessible methods to determine 

HRTFs. The method described in this paper utilizes a 

numerical, simulation-based approach to deliver spatial audio 

in an observer’s horizon. 

 

BACKGROUND  

 

Neuroscientists have been able to pinpoint the 

binaural and monaural cues that enable the human brain to 

accurately localize sound (determining a sound source’s 

azimuth and elevation angles relative to the observer). 

 

I. Horizon Localization 

 

Specifically, they found that the brain determines 

interaural time differences (“ITDs”) and interaural intensity 

differences (“IIDs”) [5], as illustrated in Figure 1, to establish 

the azimuth of a sound source relative to the observer.  ITDs 

describe the variation in sound arrival time for each ear and 

exist as a result of the difference in distance between the 

observer and source. IIDs describe the variation in amplitude 

and exist as a result of a sound wave attenuating after 

reaching a boundary such as an observer’s head or traversing 

long distances. 

 

II. Elevation Localization 

 

The elevation of sound relative to the observer is 

determined by more complex monaural cues, specifically, 

spectral notches [6], which are closely related to head related 

impulse responses (“HRIRs”). These responses are 

dependent on several attributes including head diffraction, 

reflections from various body parts, and other 

refractions/diffractions due to the pinna. This phenomenon 

will not be covered in the scope of this paper, as the focus is 

to deliver spatial audio in the observer’s two-dimensional 

horizon. However, a three-dimensional rendering of the 



user’s head could in theory be used in the simulation domain, 

effectively allowing for the HRTF to accept elevation data as 

a parameter. This would require including the third spatial 

dimension, namely elevation, into the models, which may 

influence the overall performance and introduce new sources 

of complexity to the process. 

FIGURE 1: Certain arrangements of a sound source and 

observer yield subtle differences in the sound wave arrival 

time and amplitude for each ear. The signal for the left ear is 

described by the audio plot above and the signal for the right 

ear is described by the audio plot below. The areas shaded in 

blue and red on the graph highlight the ITD and IID 

respectively. Notice the delayed start and lower amplitude for 

the left ear signal relative to the right ear signal.  

However, it’s worth noting that these cues may not 

be completely unique for every source and observer 

arrangement, yielding the same signal produced for both ears 

despite the orientation being different. This results in a 

phenomenon known as the cone of confusion [7]. One can 

easily circumvent this problem by simply moving their head 

and take note of changes that may occur in the signal for each 

ear.   

 

RELATED WORK 

 

Since the brain relies on relatively simple 

parameters to localize sound, there has been significant 

progress over recent years to create standard HRTFs for 

spatial audio [8]. These HRTFs alter an audio signal to 

provide the illusion of spatial sound by processing two 

parameters, namely, the frequency of sound and the spatial 

location of the source relative to the observer. 

 

However, many of the studies required investment 

in expensive resources including state-of-the-art anechoic 

chambers, high-quality speakers, and microphones to collect 

readings experimentally. Typically, these speakers are 

arranged spherically around a subject who has a pair of 

microphones inserted into their ear canals. These 

microphones collect readings of various tones which are then 

analyzed to design an HRTF. The measurement process takes 

up to one hour and the computational processes can take days.  

Additionally, this approach uses standard dummy heads to 

generalize the geometry of a human head, which yields a “one 

size fits all” HRTF. Hence, it fails to address the details that 

typically vary depending on the shape of an individual’s head 

and ears. Although one investigation has shown that one can 

adapt to a new hearing profile, it doesn’t make for the most 

realistic experience [9] since it takes time to adjust and often 

fails to capture the variances in perception from person to 

person. As a result, localization errors are produced and the 

generated audio is no longer capable of providing sufficient 

cues to enable the listener to correctly localize sound.  

The process of creating personalized HRTFs for 

every single individual experimentally is infeasible. It would 

require the use of expensive acoustic equipment and 

computational resources which are generally inaccessible to 

the average consumer. Hence, the proposed method utilizes 

acoustic modeling to simulate the traditional measurement-

based process. Ideally, the only equipment required would be 

a modern smartphone camera to recreate a three-dimensional 

rendering of a user’s head. LIDAR mapping is another option 

that could be used, especially since there is an increasing 

number of handheld devices that integrate it into their optical 

systems. By simulating the experiment with a deterministic 

system, the costs and infrastructure associated with creating 

a custom HRTF would effectively be bypassed. 

 

ACOUSTIC MODELING 

 

Pressure changes in a medium, caused by wave 

propagation, are typically described using the wave equation 

in the time domain and the Helmholtz equation in the 

frequency domain. These differential equations enable us to 

probe pressure data at any spatial location and at any point in 

time or at any frequency in order to obtain attenuation 

coefficients. Typically HRTFs accept a spatial location and 

frequency as parameters, but examining wave propagation in 

the time domain helps visualize some of the behaviors that 

aren’t immediately clear when visualized in the frequency 

domain. Moreover, the data visualizations in the time domain 

helped fine-tune some of the parameters that helped eradicate 

inconsistencies observed in the simulations and results. 

 

I. Approach Overview 

 

By initializing a sound source to emit the original 

audio signal or a relevant frequency and the head of an 

observer in the anechoic region as depicted in Figure 2, the 

pressure at the location of each ear can be probed to define 

the attenuation coefficients. Additionally, the phase shift can 

also be determined through a similar process, either through 

the model or a simple delay, based on the difference in 

distance from both ears. However, the latter is less 

computationally intensive. 



 

II. Defining Equations  

 

Variable symbols, definitions, and units are used as described 

in Table 1. 

 

TABLE 1: Nomenclature as used in the following 

equations and expressions.  

Symbol Definition Units 

X Position vector [𝑚] 

t Time [𝑠] 

𝜌 Density of a medium [𝑘𝑔/𝑚3] 

c Speed of sound in a me-

dium 

[𝑚/𝑠] 

p Sound pressure [𝑃𝑎] 

𝛺 Simulation domain [𝑚] 

𝜔 Sound wave angular fre-

quency 

[𝑟𝑎𝑑/𝑠] 

𝑍⬚ Specific Impedance [𝑃𝑎 ∗ 𝑠/𝑚] 

𝑍𝑏 Boundary Impedance [𝑃𝑎 ∗ 𝑠/𝑚] 

𝐹 Dipole Source [1/𝑠2] 

𝑄 Monopole Source [1/𝑠2] 

 

The partial differential equations (“PDEs”) used to 

model sound propagation and pressure distribution inside the 

space are the wave equation and the time-independent variant 

of the wave equation, the Helmholtz equation [10, 11]. The 

equations are defined as follows: 

 

Neumann boundary conditions were used to dictate 

how sound waves interacted with walls and the observer’s 

head. The head used an impedance boundary condition and 

the walls used an absorption boundary condition; each 

defined as follows respectively: 

 

 

 

 
 

III. Solving the PDEs 

 

The PDEs were solved using discretization using the 

finite element method for easy implementation on digital 

computers. The results returned were in the form of 

interpolating functions. The Helmholtz PDE was also 

parametric, with the parameter being frequency.   

 

IV. Visualizing and Interpreting Results 

 

By plotting the interpolating functions, many of the 

expected behaviors become apparent, as shown in Figure 2 

(time domain) and Figure 3 (frequency domain). Sound 

propagation in the time domain occurs as anticipated and 

effects such as head shadowing are visible in the pressure 

distribution in the frequency domain. By solving the PDEs 

with discretization, the data is no longer continuous and 

hence yields certain anomalies in the data; however, these 

anomalies aren’t too noticeable when it is applied to the 

audio.   

 
FIGURE 2: Graphs are identified one through three starting 

at the top left clockwise.  Graph one shows the anechoic 

region with the large white circle representing the observer’s 

head and the small white quarter circle at the bottom right 

representing the sound source, defined by a Neumann 

radiation boundary. A circle was used to model the head and 

ears instead of a more representative shape because of the 

lack of depth-sensing instruments. However, the models 

could indeed be adjusted to accept a more accurate geometric 

representation. Graph two and three display the pressure 

distribution at a single point in time as a contour and three-

dimensional plot respectively; generated using the wave 

equation in the time domain. 



 

 
FIGURE 3: This contour plot depicts the pressure distribution 

in the anechoic region with a monopole sound source 

emitting a frequency of 500Hz and the head of an observer; 

generated by solving the Helmholtz equation in the frequency 

domain. Head shadowing is evident from the low pressure 

behind the head and the contour matches the predicted 

distribution. 

 

 

AUDIO PROCESSING 

 

 Having determined an HRTF that accepts a 

frequency and a spatial location as parameters, the next step 

would be applying the functions to an audio input.   The most 

effective way to do so is by using a Fast Fourier Transform 

and an Inverse Fast Fourier Transform pair along with a 

window function to fill in any discontinuities that appear 

while processing.  

 

I. Fourier Transform 

 

Decomposing the original audio into a sum of 

sinusoids using a Discrete Fourier Transform gives access to 

frequency intervals which can be attenuated using the 

parametric function obtained by solving the Helmholtz 

equation. Additionally, applying the Fourier Transform 

allows for informative visualizations using the spectrogram. 

The spectrogram helps visualize the changes in the amplitude 

for each frequency interval and the quality of the generated 

audio. 

 

II. Attenuating Frequency Intervals 

 

The spatial location of each ear is passed into the 

parametric function in addition to a frequency parameter. To 

expedite processing time, frequencies were inputted at 

intervals of 500Hz yielding a total of ten interpolating 

functions. While this didn’t produce the most accurate results, 

it was the most computationally reasonable process. 

Obtaining an interpolating function from the parametric was 

a rather time-consuming operation.  

 

Each interpolating function returns an attenuation 

coefficient for its specific frequency interval and is convolved 

with corresponding frequencies in the original audio data. 

Once each frequency interval has been attenuated 

successfully, the generated audio is recreated using an 

Inverse Fast Fourier Transform.   

 

III. Hann Smoothing Window 

 

Through this process, several artifacts are 

introduced into the generated audio and there is substantial 

data loss. To alleviate this problem, a Hanning (Hann) 

window was used to smooth discontinuities in the audio, 

preserve frequency resolution and reduce spectral leakage. 

Upon close examination of the spectrogram plots of the audio 

before and after applying the function, it is revealed that each 

frequency interval has been attenuated as expected, shown in 

Figure 4.  

 

Other window functions including Blackman, 

Gaussian, and Poisson were used to experiment with different 

audio files.  However, the Hann window was able to 

generalize to all tested audio inputs the best and outperformed 

the others in terms of quality.  

 

RESULTS 

 

As seen in Figure 4, attenuation appeared to have 

been performed as expected. When compared to 

spectrograms of experimentally determined HRTFs, such as 

MIT KEMAR, Figure 5, the results were similar, but there are 

a few notable shortcomings. The most prominent was the 

low-quality audio output after processing. 

One reason could be the significant data loss even 

after applying a Hann window. While some discontinuities 

were eradicated, the overall audio still experienced a 

noticeable loss in quality. Additionally, the introduction of 

artifacts in certain frequency intervals still persisted. The 

investigation presented in this paper was conducted in its 

entirety using the Wolfram Language in Mathematica [12], 

which is known for being a high-level language and may have 

been the cause of quality loss. The aforementioned issues 

would likely be resolved if the entire process was translated 

to a lower level language with proprietary algorithm 

implementations. Not only would this make the entire process 

run at a reduced time complexity, but it would also enable 

more flexible experimentation since there would be no 

restriction to exclusively use the built-in functions offered by 

the Wolfram Function Repository. 

 

 

 

 



FIGURE 4: Spectrograms are identified one through four 

starting at the top. Spectrogram one depicts the original audio 

with data for nearly all audible frequencies. Spectrograms 

two and three show frequency data for both the left and right 

channels. Since the top end of the spectrogram became 

lighter, it is suggested that the higher frequencies are 

attenuated at a higher magnitude in comparison to the lower 

frequencies, as predicted. Moreover, the left channel 

experienced a more significant loss in higher frequencies in 

comparison to the right channel due to the orientation of the 

sound source and observer.  The sound had to propagate 

through the observer’s head to reach the left ear, hence 

preserving only the lower frequency sound. Spectrogram four 

z the final mix after combining both channels. Notice the 

change in scale along the frequency axis for the first 

spectrogram and the rest; The generated audio has no data for 

frequencies above 5000Hz. This is most likely attributed to a 

loss in quality after processing since experimentally 

measured HRTFs possessed data for those frequencies. 

 

  

 

FIGURE 5:  Spectrogram result after applying the KEMAR 

HRTF to the same audio input. Frequency data was 

possessed, although at lower amplitudes for up to 10000Hz, 

resulting in a fuller sounding result. Applying an audio 

normalization to the audio generated in this paper yields a 

similar amplitude distribution, however there is a noticeable 

loss in frequency.  

 

Frequency interval ranges could have also been 

decreased to provide for a more immersive experience but 

would have come at the expense of processing time. This 

tweak would have required solving for more than the ten 

interpolating functions from the parametric function obtained 

from the Helmholtz equation. Hence, it wasn’t feasible with 

the Wolfram Language. However, as mentioned earlier, 

lower language implementation may alleviate this problem. 

Note that all code from this project is stored in Github [13] 

and the preliminary work is documented in the Wolfram 

Community  [14]. 

 

FUTURE WORK 

 

This project, although far from perfect, serves as a 

strong underlying foundation for future improvement. The 

proposed method produced reassuring results and provided a 

clear path for future work. As suggested in the results, one of 

the next steps would include transcribing the Wolfram 

Language code into a slightly lower level language like 

Python that would still offer built-in methods and frameworks 

which would streamline the development process, while still 

allowing for flexibility in experimentation and 

customizability.  

 

Additionally, introducing the third spatial 

dimension into the model and comparing the monaural 

spectral cues it produces with experimentally measured cues 

could be interesting. Another possible extension would be to 

create three-dimensional renderings of an actual head using 

LIDAR or another form of depth-sensing to truly produce a 

custom HRTF. Most importantly, however, there is a need for 

a concrete metric to quantify the performance and quality of 

results. As of now, the comparison consisted of looking at the 

phase shift for each channel and the amplitude differences. If 

the project is implemented to simulate a three-dimensional 

space, the current form of analyzing results won’t be as 

effective since it would be difficult to closely examine the 

monaural cues through a spectrogram.  



It may also be informative to investigate some of the 

behaviors of the model in an environment with obstacles and 

different types of boundaries. This may help gauge the 

accuracy and performance of the model. Another possible 

extension could include utilizing an accelerometer on the 

user’s headset to determine their position relative to other 

objects in the simulated room and make changes to the audio 

in real-time. These ideas are indeed far-fetched, but may be 

possible to implement if the quality of the audio is improved 

and the third spatial dimension is incorporated into the 

existing model. 
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