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Abstract — Common genetic diseases—systemic diseases 

that are caused by thousands of mutations—affect 

millions of people around the world. Many of these 

mutations fall within regulatory regions. While the 

mutations associated with these diseases are widely 

known, the link between these mutations and their role 

in disease pathogenicity has largely gone undiscovered. 

This study harnesses single cell ATAC-seq data to 

differentiate bound and unbound sites in regulatory 

regions, serving as a first step to understanding these 

diseases. By computing observed and expected cuts for 

footprint regions, this study finds that regions with lower 

observed cuts than expected cuts conferred to protection 

from sequencing enzymes, indicating the presence of a 

bound transcription factor. In contrast, regions with 

higher observed cuts than expected indicate the absence 

of protection from sequencing enzymes, suggesting an 

absence of a bound transcription factor. In 

distinguishing between bound and unbound 

transcription factors, this study paves the way for using 

single cell ATAC-seq to understand common diseases by 

identifying the cell types and changes in transcription 

factor binding caused by mutations 
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INTRODUCTION 

 

Common genetic diseases are often caused by 

thousands of mutations and affect millions of people in the 

world each year. These diseases, which include heart 

disease, schizophrenia and Crohn’s disease, are difficult to 

treat because their exact pathogenicity remains unclear. 

Despite the identification of mutations for these diseases, 

the link between these mutations and their role in expressing 

disease phenotypes has been largely undiscovered, 

particularly in understanding the cell types and biological 

pathways that are affected by the mutations. An analysis of 

these mutations, however, found that 80% of these 

mutations occur in distal regions, containing cis regulatory 

elements that drive gene expression [1]. The exact effects of 

these mutations on these regulatory regions remain unclear. 

Specifically, understanding the role of mutations in 

transcription factor binding is incredibly important as 

transcription factors play a large role in 

activating/suppressing gene expression. Despite this, there 

has been little information on detecting differences in 

transcription factor binding, serving as the premise for this 

study.   

Sequencing technology has provided a plethora of 

information about gene regulation in cells. Specifically, 

Assay for Transposase-Accessible Chromatin sequencing 

(ATAC-seq) and DNase-seq identify accessible regions 

which are often regulatory regions. In the case of DNase-

seq, this has led to the creation of DNase-I hypersensitive 

site (DHS) databases, creating a reference library for 

mapping regulatory regions [2] [3]. ATAC-seq harnesses a 

sequencing enzyme, Tn5 transposase, to attach adapters 

onto regions without nucleosomes which characterize 

accessible regions; these adapters are visualized by the 

sequencer in order to visualize the accessible regions. 

Furthermore, the rise of single cell ATAC-seq (scATAC-

seq) has provided clearer resolution in identifying the 

accessible properties within a single cell as well as 

subpopulations in cells, particularly tissue [4]. This new 

technology has provided unprecedented ability to visualize 

accessibility regions in order to not only cluster different 

cell types but also explain the role of specific transcription 

factors in biological processes, such as cell differentiation 

[5]. 

These sequencing techniques have also been applied in 

DNA footprinting. ATAC-seq and DNase-seq use 

sequencing enzymes to cut accessible regions, which are not 

bound or “protected” by a protein. Footprinting involves 

observing drops in accessibility caused by the inability for a 

sequencing enzyme to cut a bound region. This technique 

has been harnessed to study within the regulatory region, 

especially in relation to transcription factor binding. 

Transcription factors typically recognize and bind to 

particular DNA motifs (short, distinct sequences) in 

accessible regions in the genome. However, not all 

accessible motifs have transcription factors to bind to them 

due to a variety of factors, including the lack of transcription 

factor expression or the absence of necessary cofactors. 

Footprinting allows us to visualize which motifs are actually 

bound by observing slight drops in accessibility caused by 

transcription factor:motif binding [6]. 

Despite the wealth of information that footprinting 

brings, there has been little knowledge about whether this 

information can be translated to single cell sequencing data. 

By determining whether footprinting can be detected in 

scATAC-seq data, this study identifies where these 

transcription factors may bind and also characterizes 



whether they are bound or unbound. In relation to common 

genetic diseases, mutations in these regions often confer to 

changes in gene expression [6]. Thus, detecting differences 

in transcription factor binding, in the context of allele 

specific binding, for single cells has the potential to be an 

incredibly powerful tool in understanding these complex 

common genetic diseases [7]. 

Building upon this understanding, this study addresses 

this fundamental challenge in understanding common 

diseases by providing the link between mutation and disease 

phenotype through identifying the cell type, biological 

pathways and nearby genes that are involved in functional 

changes due to variants linked to disease phenotypes. In 

doing so, this study opens the doors for drug development 

that targets and stimulates or suppresses transcription factor 

binding sites in affected cells to address these common 

diseases. 

METHODS 

A. Extraction and Verification of Sequencing Data 

Single cell ATAC-seq fragments data for CD8+ T cells was 

downloaded from Gene Expression Omnibus platform [8]. 

(Accession Number: GSM4293910). CD8+ T cell data was 

used specifically due to its relevance to a variety of 

autoimmune diseases, such as Crohn’s disease as well as 

abundance of high-quality CD8+ ATAC data. DHS index 

and footprint data were downloaded from their respective 

papers to serve as a reference to map accessible fragments 

to footprints and index regions[2] [3]. The ATAC-seq 

fragments and the DHS index were overlapped in bedtools 

to map accessibility (in the form of these fragments) to 

footprints, and the number of overlapped cuts along with the 

location of the overlapped regions were mapped in order to 

confirm that the cuts came from lymphoid cells [9]. 

 

A. Enrichment Determination 

 

In order to determine the most relevant or active 

transcription factors in the CD8+ T cell ATAC data, the 

enrichment of these transcription factors was calculated. To 

do so, a threshold was set at one cut per base (from arcsinh 

transformed data). If an overlapped region had more than 

one cut per base, then it was considered “more accessible;” 

If an overlapped region had less than one cut per base, then 

it was considered “less accessible.” Each of these data sets 

(more accessible and less accessible) were overlapped with 

a DHS footprint library in order to match footprints and 

motifs with an accessible category. For each transcription 

factor, the frequency of the motif in the more accessible and 

less accessible categories were calculated separately. The 

equation for the enrichment or the fraction of the motif that 

was present in the more accessible category was developed 

and was calculated such that:  

 

 
 

B. Footprint Ranking and Candidate Identification 

 

The enrichment ratio serves as an indicator for how active a 

certain motif was in the CD8+ T cell type. After calculating 

the enrichment ratio for each motif, we ranked all the 

transcription factors by the motif enrichment ratio. The ten 

most enriched motifs were the candidate footprints. 

 

C. Calculating Sequence Bias and Expected Cuts 

 

After determining the candidate footprints, the number of 

cuts expected within a region was calculated to serve as a 

control to detect differential binding. The Tn5 enzyme for 

ATAC-seq does not cut the fragments in a uniform manner, 

but instead, demonstrates a bias for cutting at certain 

sequences [10]. To account for sequence bias when 

determining the expected number of cuts, a table listing 

different 8-mers and their respective bias values was 

obtained [10]. For each candidate footprint, the DHS index 

element that makes up the general region of the footprint 

was divided into 8-mers. A query between the 8-mers in the 

sequence and the sequence bias table was executed, and the 

sum of the sequence bias values was determined in order to 

calculate the total bias in the sequence. The same procedure 

was repeated in the area of the footprint itself. The expected 

number of cuts within a given footprint region, e, was 

calculated based on the total cuts within the DHS element as 

well as bias within the footprint itself as well as in the entire 

region: 

 
 

 

D. Determining Differential Binding 

 

In order to investigate whether a transcription factor is 

bound or not bound, the number of observed cuts within a 

region was determined by overlapping the ATAC-seq 

fragments with the DHS footprints and calculating the 

number of intersections between ATAC-fragments and DHS 

footprints for each footprint. If the number of observed cuts 

is greater than or equal to that of expected cuts, the higher 

number of observed cuts indicates that the region was not 

protected from the fragmentation of the Tn5 enzyme during 

ATAC-seq; thus, footprint is unbounded. If the number of 

observed cuts was less than the number of expected cuts, the 

footprint is bound because the region faced protection from 

the Tn5 enzyme, resulting in fewer fragments and indicating 

the presence of a bound transcription factor. 

 

E. Statistical Analysis 

 

To calculate significance between the observed and the 

expected values, Anscombe transformation was first applied 

to normalize the distribution of the values. The 

transformation turns these values into a unit of standard 

deviation. Thus, the z-score is calculated by subtracting the 



expected value (after transformation) from the observed 

value for each binding site. The z-score is then converted 

into a p value. Since many binding site locations (n=159) 

were tested under a single hypothesis (whether a footprint is 

bound or not), the p values runs the risk of Type I errors or 

false positives. To account this, Bonferoni correction was 

applied: each p value was multiplied by the total number of 

binding sites. 

 

F. Identifying Potential Binding Sites 

 

Upon calculating the p-value for each footprint binding site, 

the sites with the most potential for binding were identified 

for further examination. Sites with the highest binding 

potential were the footprint sites with significantly lower 

observed than expected (p<0.05) because areas with 

significantly lower observed than expected suggests the 

resistance of the footprint to the Tn5 cutting enzyme due to 

the presence of bound transcription factor.   

 

G. Metaplot Analysis 

 

After identifying the potential binding sites, the profiles for 

these binding sites were developed to visualize binding 

within these sites. For a given footprint region, the expected 

profile was compiled by applying the expected cuts equation 

for each base in the entire DHS index and mapping out these 

expected cut numbers in relation to their position on the 

DHS index element. In addition, the observed profile was 

developed by mapping where the observed ATAC-

fragments fall in the DHS index. Upon calculating the 

profile, the mean of all the observed and expected profiles 

were mapped together in order to observe differences 

between the two categories for the binding sites. 

 

RESULTS 

 

A. Density Plots Identify Enriched Sites in ATAC data 

 

 

Upon calculating the enrichment ratios, the footprint 

enrichment data was visualized using density plots to help 

determine the candidate footprints. As seen in Figure 1, 

HINFP1/3, the most enriched transcription factor had high 

frequencies at high log cuts per bases, demonstrating high 

enrichment. HINFP1/3 is a regulator for DNA methylation 

and transcription and is over-expressed in CD8+ T-cells 

[11]. In contrast, ZNF24, the least enriched transcription 

factor had high frequency at lower log cuts per bases, 

indicating low enrichment. As for all other transcription 

factors, the density plots compare the frequency of a 

footprint to the number of cuts per base. The higher the 

frequency was at a higher number of log cuts per base, the 

more enriched a particular footprint was. The plot features 

“with motif” which maps the relationship for a particular 

transcription factor and “without motif” which maps the 

relationship for all other transcription factors as a 

comparison. 

 

 

 
 

 
 

FIGURE 1: Representative density plots of the highest 

enriched (above) transcription factor (HINFP1/3) and the 

lowest enriched (below) transcription factor (ZNF24) in 

CD8+ T cells.  

 

 

 

 

 

TABLE 1: The ten most enriched transcription 

factors along with their enrichment ratios 

Transcription Factor Enrichment Ratio 

HINFP1/2 0.468354 

HINFP1/3 0.457364 

ZBTB14 0.408665 

KAISO 0.34715 

HINFP1/1 0.34569 

E2F/4 0.32182 

MBD2 0.303204 

CENBP 0.292683 

AHR 0.275578 

GMEB2/3 0.264368 



B. ATAC-seq Analysis Maps Potential Binding Sites 

 

For each binding site, the expected and observed cuts were 

plotted in relation to each other, as shown in Figure 2. The 

scatter plots serve to identify potential binding locations. 

These areas are defined by areas with lower observed cuts 

and higher expected cuts, indicating protection from the 

sequencing enzyme due to a bound transcription factor. 

Binding potential was measured using the regularized ratio 

(see Methods) and visualized with a colormap. The twenty 

five footprints with the lowest regularized ratios were used 

to further visualize the binding location and the binding 

behavior using metaplots. On an additional note, in 

comparison to HINFP1/2 (most enriched footprint), HD/10 

has higher regularized ratios, as seen in Figure 2, possibly 

due to a lower prevalence of binding sites due to lower 

expression of the footprint. 

 

 

 
FIGURE 2: Representative scatter plots that map the 

relationship between observed cuts and expected cuts. Areas 

with higher binding potential lie in regions with high 

numbers of expected cuts but low numbers of observed cuts. 

A color map was developed based on the regularized ratio. 

More enriched transcription factors (HINFP1/2) have more 

binding sites with lower regularized ratios compared to less 

enriched transcription factors (HD/10). 

 

 

C. Metaplot Analysis Identifies Bound Locations 

 

After identifying potential binding locations, the expected 

and observed cut profiles for the DHS index were mapped. 

As seen in Figure 3A and Figure 3C, the lower number of 

cuts observed in the footprint region than expected due to 

protection from the cutting enzymes provides evidence for 

transcription factor binding on that site. In less enriched 

footprints, such as HD/10, the observed cuts are equal to or 

greater than the expected cuts, demonstrating that the region 

was not protected from the sequencing enzyme, providing 

evidence that the region is unbounded (Figure 3B, Figure 

3D).  

 

The expected and observed profiles could be further 

expanded to the other 24 regions with the highest binding 

potential in HINFP1/2 as seen in Figure 4. Consistent with 

the results from Figure 3, there is a large difference between 

the expected and the observed cuts in the enriched footprints 

in that the expected cuts are much higher than that of the 

observed, demonstrating that these regions are likely to be 

bound. For unenriched footprints, the opposite holds: the 

observed is equal or higher than the number of expected 

cuts. 

 

 
FIGURE 3: Expected and observed cut profiles of a 

representative HINFP1/2 (A) and HD/10 (B) with the 

footprint region shaded in red as well as the higher-

resolution profile of the footprint itself. Within the enriched 

footprint (HINFP1/2), the observed cuts seem to be 

consistently lower than the expected cuts (C). In less 

enriched footprint (HD/10), the observed cuts are equal or 

higher than the expected cuts (D). 

 



  

 
FIGURE 4: Metaplot analysis of the expected and observed 

cuts of the 25 regions with the most binding potential in 

HINFP1/2 (left) and HD/10 (right). 

 

DISCUSSION 

 

By comparing the observed cuts and expected cuts in a 

given footprint region, the results of this study harnesses 

scATAC-seq to characterize bound and unbound 

transcription factor sites. Specifically, the paper found that 

bound sites contained lower observed cuts than expected, 

resulting from protection by the bound transcription factor 

within the region. In contrast, unbound sites had an equal 

number or more observed cuts than expected, indicating that 

the region showed no protection (allowing the sequencing 

enzyme to freely fragment the area). 

 

In distinguishing between bound and unbound sites, this 

study establishes a novel method for studying changes in 

expression through scATAC-seq. While past studies have 

identified DNA footprints and accessible sites [2] [3] using 

DNase-seq, these sequencing techniques lack efficiency to 

distinguish individual cell types without a large set of 

materials for input as well as differentiating between sub-

populations within a cell type. This study lays the 

foundation for using scATAC-seq, which allows for 

identifying specific cell types and subtypes, to study the 

different transcription factor binding behavior within these 

specific cell types. In doing so, this study has the potential 

to influence the  study of these common genetic diseases by 

examining the regulatory context of each cell type and 

linking mutations to a certain cell type, transcription factor 

or other regulatory element 

 

Only through identifying these features within the 

regulatory regions can we fully identify the inner workings 

behind genetic diseases and develop specific drugs to 

correct for these mutation-induced differences in the 

regulatory environment. The potential for single-cell 

sequencing for understanding common genetic diseases and 

guiding targeted drug therapies is enormous, and this study 

serves as a first step for harnessing their potential to 

understanding and treating these diseases. 

 

FUTURE WORK 

 

This study hopes to expand the data set from CD8+ T cells 

to a wide variety of other cell types to characterize binding 

behavior in footprints for other cell types. In expanding the 

knowledge of transcription factor binding in more cell types, 

a reference library containing measurements of accessibility 

and binding for each transcription factor in a particular cell 

type can be developed. This can serve as a basis for future 

studies in comparing disease sequences and expression with 

this library.  

 

It is important to note that DNA footprinting identifies 

potential sites of interest for binding, but does not confirm 

and verify binding. While we show that single-cell ATAC 

data does detect differences in transcription factor binding 

behavior, further validation is needed to confirm our results. 

This validation can take the form of ChIP-seq, which is a 

more direct way of confirming transcription factor binding 

to validate our results.  

 

Another possibility for this study is to harness and 

categorize scATAC-seq data from Genome Wide 

Association Studies (GWAS) for different types of common 

genetic diseases. Upon categorizing the individual cell types 

and subtypes, this study will compare the transcription 

factor binding behavior and accessibility to that of a 

reference library. From there, differences between the 

GWAS data and the reference data can be detected, leading 

to a better understanding of the specific cell types, 

transcription factors and biological pathways that are 

relevant in causing diseases. This understanding would be 

extremely powerful in developing drugs in correcting these 

differences and alleviating the effects of these diseases. 

 

CONCLUSIONS 

 

This study developed an approach to characterizing the 

differences in bound and unbound transcription factors by 

examining ATAC-seq data. This was done in three steps. 

First, the most enriched footprints were identified in the 

DHS region by observing the distribution of cuts in relation 

to a particular footprint. From there, we identified 

HINFP1/2 as the most enriched footprint and HD/10 as the 

least enriched footprint. Next, we identified potentially 

bound sites by computing and comparing the observed and 



expected cuts for the candidate footprints. Areas with low 

observed:expected ratios were selected and used for 

developing the metaplots. The metaplots compile the profile 

of the observed and expected to help us better understand 

the regulatory region specifically. From this compilation, 

this study identified bound sites as areas with less observed 

cuts than expected cuts, demonstrating protection from 

sequencing enzymes caused by transcription factor binding. 
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