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Abstract – The efficiency of Artificial Neural Network 

(ANN) potentials enables the modeling of materials at 

scales that are too computationally expensive for 

conventional first-principles approaches. However, the 

force and energy-prediction accuracy of ANNs are 

generally limited by the availability of training data and 

training hours. The enlistment of more efficient training 

methods can partially mitigate this limitation. In this 

paper, I demonstrate the capabilities of my new Python 

program, PyITA, which executes a recently demonstrated 

Taylor expansion-based data augmentation technique11. 

Using my program, I was able to evaluate the powerful 

methodology by constructing and comparing ANN 

potentials for the chemical species titania (TiO2). I 

compared the error distributions of the augmented 

potentials with that of the non-augmented potentials. 

Potentials were trained on both a large (7815 structures) 

and a small (500 structures) dataset. I ultimately found 

insufficient evidence to confirm that the data 

augmentation method is effective for increasing the 

accuracy of either force predictions or energy predictions 

on either dataset.  
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INTRODUCTION 

I. Background 

 

Atomistic simulations are crucial to an informatics 

approach to materials science. Thanks to their extraordinary 

accuracy, first principles-based quantum mechanical 

modelling is often used to yield potentials that are crucial to 

the study of material characteristics1,2. For instance, Density 

Functional Theory (DFT) calculations rely on a very accurate 

approximation of the many-body Schrodinger equations3. 

DFT has been applied to the study of superconductivity4, 

magnetism5, and phase-change materials6. Owing to its 

flexibility and accuracy, it is a powerful tool.  
However, even DFT can be too computationally 

expensive and impractical for the study of certain complex 

materials and interfaces7. Increasingly, ANNs trained on 

reliable data (such as DFT calculations) are used to predict 

material properties instead7,8,9,10. Critically, the difficulty of 

ANN potential training scales linearly with the number of 

atoms in the training set. In contrast, the difficulty of DFT 

calculations often scales cubically, quartically, or even 

quintically with structure size. As such, ANN potentials can 

be applied to systems that are too large to be practically 

modelled by DFT calculations.  
Despite their advantages over first principles-based 

methods, the training of sufficiently accurate ANN potentials 

is often hampered by the limited availability of sufficiently 

large datasets. Data augmentation allows us to enhance 

limited training datasets, improving the data-

efficiency/effectiveness of ANN training models. Advances 

in data augmentation techniques will reduce the research cost 

of future studies in computational materials science.  

 

 
FIGURE 1: This flowchart demonstrates how ANN 

potentials are constructed with PyITA. PyITA neither 

modifies nor replaces preexisting featurization and training 

methods. Instead, it creates additional input data from the 

original dataset by modifying copies of pre-existing 

structures. The supplementary dataset contains all data 

generated by PyITA. In this paper, any reference to an 

“enhanced”, “extended”, or “augmented” dataset refers to the 

set of all structures in the relevant parent and supplementary 

datasets (ie. the original dataset combined with the 

supplementary dataset). 

 

 

 



II. PyITA & Aenet 

 

Aenet7 is an open source software package developed by 

Dr. Artrith and Dr. Urban. In this paper, Aenet was used to 

perform dataset featurization, conduct neural network 

training, and produce energy/force predictions.  

Aenet contains three notable configuration files, 

conventionally named generate.in (for featurization), 

train.in (for training), and predict.in (for 

prediction). generate.in contains the locations 

(/path/to/file) of every structure file in the training dataset. 

The training dataset is a collection of XCrySDen-format 

(.xsf) structure files that state the atomic symbols and 

Cartesian positional coordinates of constituent atoms, the 

forces acting on each constituent atom (in the +x, +y, and +z 

directions respectively), and the total structural energies.  

Cooper et al. demonstrated the incorporation of force 

information in training via a Taylor expansion as an 

incredibly new and promising method for increasing the 

effectiveness of ANN training11. The Taylor expansion itself 

allows us to computationally-efficiently estimate 

approximate energies of new structures. I independently 

implemented this method in a now open-source Python 

program: PyITA (Python Implementation of Taylor-

expansion for Aenet)12. PyITA functions as a pre-

featurization external data augmentation program (Figure 1).  

 

 
FIGURE 2: Flowchart demonstrating PyITA’s creation of 

additional structures. Six additional structures are created for 

each atom in each structure in the original dataset until the 

supplementary dataset reaches a sufficient size (based on 

user-configured a-value).  
 

Force information from structures in the original dataset 

are used to generate additional approximate structure data 

(coordinates and energies) near the positions of existing 

structures. For each atom in any parent structure, PyITA can 

create six additional approximate structures (Figure 2).  

After prompting the user for an augmentation-factor a 

(also referred to as the a-value in this paper) and a user-

configurable displacement constant δ, PyITA reads every 

existing structure (.xsf) file in the provided training 

(parent) dataset into a list. A new structure is created by 

displacing any atom in any parent structure by δ in one of six 

directions (+x, +y, +z, -x, -y, -z). PyITA does so iteratively, 

starting from the first atom of the first existing structure and 

stopping when the number of created structures is equal to 

the product of a and the number of structures in the original 

dataset. The new structures are written as .xsf files in a 

user-designated directory, effectively forming the 

supplementary dataset. The file locations of all structures in 

the supplementary dataset are written to a new 

generate.in file. The original generate.in file 

remains untouched so that additional PyITA structures based 

on the same parent configuration file can be easily created. 

Crucially, based on the first-order Taylor expansion 

demonstrated in Equations 10 and 11 of the Cooper et al. 

paper11, we approximate the energy of each new structure as 

the energy of its parent structure subtracted by the product of 

δ and the component force experienced by the original 

structure in the direction of the displacement. 

Algorithmically, atomic displacement in any negative 

direction is treated as a displacement of equal magnitude in 

the corresponding positive direction such that δ = -δ0.  

As this method is essentially a form of data augmentation, 

I refer to datasets enhanced by PyITA as “augmented” in my 

paper. 

 

III. Approach & Promise 

 

Using PyITA, I test the feasibility of the Taylor 

expansion approach for the efficient training of ANN 

potentials on TiO2. The study of TiO2 is especially valuable 

because it is a powerful model material with applications in 

optics, nanotubes research, and photocatalysis. Recently, 

Xiang et al.12 utilized TiO2 to demonstrate the application of 

ANN potentials to the study of the flexoelectric effect.13 In 

this paper, I utilize a training dataset containing 7815 TiO2 

structures. Dr. Artrith and Dr. Urban graciously provided this 

dataset to the public7. 

I hope to aid future research in the field of materials 

informatics by evaluating a new and potentially more 

effective method for the training of TiO2 potentials.  
 

METHODS 

 

Initially, I trained five ANN potentials on a dataset 

consisting of 500 structures randomly chosen from a 7815-

structure dataset. I also trained five additional ANN 

potentials on a PyITA-augmented version of the same 500-

structure dataset (δ=0.03 and a=6). I assigned Trial Numbers 

(one through five) to the ANN potentials in each category. I 

trained each ANN potential to 15 iterations, randomly 

choosing 10% of each dataset as an independent test set. I 

configured the ANN architecture to include two hidden layers 

per atomic species, each with 15 nodes. I used the Limited-

Memory Broyden-Fletcher-Goldfarb-Shanno (LM-BFGS)14 

training method, as implemented in Aenet.  

I then created two additional potentials. I trained one 

potential on the entirety of the 7815-structure TiO2 dataset 

and another potential on a PyITA-augmented version of the 

full 7815-structure dataset (δ=0.03 and a=4). This time, I 

selected an augmentation factor lower than the earlier a=6 



value due to computational constraints. However, I preserved 

the neural network architecture and training configurations of 

the previously constructed 500-structure potentials.  

Finally, the most crucial outcome of the Cooper et al. 

Taylor expansion method is an improvement in the accuracy 

of force predictions. To test this, I created ten additional ANN 

potentials: Five trained on the previously discussed 500-

structure dataset, and another five trained on an augmented 

version of said 500-structure dataset. Again, I held the neural 

network architecture constant.  

 

RESULTS AND DISCUSSION 

 

I computed the relative energy errors for each of the 

original 500-structure potentials based on data from the 

independent test sets. I calculated the median relative energy 

error for the five non-augmented ANN potentials to be 

approximately 3.27 meV, while the median relative energy 

error for the five augmented ANN potentials was 

approximately 4.22 meV. Further, the range of errors on the 

augmented potential was greater than the range of errors on 

the non-augmented potential (Figure 3). It appears that the 

augmentation technique as performed using the current 

approach failed to improve energy predictions based on the 

500-structure datasets. 

 
FIGURE 3:  The violin plot represents a combination of all 

five respective potentials of the augmented and non-

augmented datasets, as the distributions were computed with 

the combined validation data (across trials) for each dataset 

(e.g. The “augmented” distribution is constructed from the 

absolute relative energy errors of predictions by all five 

potentials based on the augmented dataset). The absolute 

errors in relative energy were computed with the independent 

test set. They are defined as the absolute values of the 

differences between the relative (per-atom) energies of the 

reference structure (computed by DFT) and the ANN-

computed relative energies. 

 

I initially hypothesized that since 500-structure datasets 

are unusually small for ANN potentials characterizing 

materials as complex as TiO2, there may simply not have 

been a sufficiently diverse set of training data for the potential 

to yield consistently accurate predictions, regardless of the 

application of data augmentation techniques. If the structures 

represented in the training dataset are very similar, the neural 

network may overfit.   
However, augmentation remains apparently ineffective 

in the 7815-structure potentials. The enhanced 7815-structure 

potential had a higher median and mean absolute relative 

energy error than its non-augmented counterpart. However, 

in contrast with our findings for the 500-structure potentials, 

the augmented 7815-structure potential yielded absolute 

relative energy errors with a much smaller range than the 

non-augmented 7815-structure potential (Figure 4). If future 

research identifies a decrease in the range of relative energy 

errors as a consistent feature of our data augmentation 

technique, PyITA could help achieve more robust 

extrapolation than what is possible with energy-only 

training.  

FIGURE 4: This plot demonstrates the distributions of 

absolute errors in relative energy for the respective 

augmented and non-augmented potentials trained on the full 

7815-structure dataset (Left: Augmented, Right: Non-

Augmented). The median absolute error in relative energy for 

the augmented potential was 5.4 meV, which is noticeably 

higher than the non-augmented potential’s median absolute 

error of 3.5 meV. However, the augmented potential’s error 

distribution has a noticeably smaller range. 

 

I observed that distribution-features across trials varied 

greatly for both augmented and non-augmented 500-structure 

potentials. This variability may also exist in 7815-structure 

potentials. More trials (potentially with a larger iteration 

count and a larger independent test set) must be performed to 

concretely determine the impact of our augmentation 

technique on the distribution of absolute relative energy 

errors.  

Finally, I calculated the frequency of errors in absolute 

force for each atom in each structure of the independent test 

set by subtracting the predicted interatomic forces from the 

reference (DFT-calculated) interatomic forces in each 

Cartesian direction. The distribution of absolute errors in 

force predictions are compared in Figure 5.  



 
FIGURE 5: This plot demonstrates the distributions of 

absolute errors in force predictions for the augmented and 

non-augmented 7815-structure potentials. The median 

absolute error in force predictions for the augmented 

potential was marginally higher than that of the non-

augmented potential (0.597 eV/Angstrom vs. 0.574 

eV/Angstrom). The range of the errors in the augmented 

potential was also noticeably larger. 

 

CONCLUSION AND FUTURE STUDIES 

 

I have not found sufficient evidence to demonstrate that 

the Taylor expansion-based data augmentation technique is 

effective in increasing the accuracy of either force prediction 

or energy prediction in TiO2. This does not, however, mean 

that the technique is not suitable for the study of TiO2.  

After I thoroughly tested my error calculation 

methodology and closely reviewed the outputs of my error 

calculation software, I suspect that the problem could be 

explained by the large variations in accuracy I observed 

across trials. In other words, due to the constraints presented 

by my limited access to computational resources, the per-trial 

variations in the distributions of both energy and force errors 

were large enough to make it difficult to draw meaningful 

conclusions.  

I strongly suspect that the specific neural network 

architecture used in my study––especially due to the 

relatively low number of iterations/epochs––prevented the 

augmentation technique from being effective. Training to a 

greater number of iterations leads to better-fitting models, 

which could result in changes to the size of the training 

dataset being much more impactful. 

It is also possible that the relatively low a-values used in 

my calculations have played a factor. With more time and 

computational resources, I would be able to determine an 

attainable “sweet spot”: a computationally achievable 

configuration which noticeably improves my potentials’ 

predictive capabilities.  

Finally, my findings may hint to a limitation in the 

Cooper et al. methodology. That is, the first order Taylor 

expansion-based data augmentation strategy might 

consistently fail for LM-BFGS ANN potentials that are not 

trained to a sufficient number of iterations. It is possible that 

preserving the Cooper et al. Taylor expansion to a greater 

order would be appropriate when training resources are 

limited, as it would reduce the signal-to-noise ratio of the 

supplementary dataset. However, this modification might 

also greatly increase the computational intensiveness of the 

data augmentation process. Further study would be necessary 

to confirm this hypothesis. 
Materials informatics is a field in its infancy. I eagerly 

anticipate exciting future research on data augmentation for 

the development of ANN-potentials. 
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