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Abstract 

Allergic rhinitis is a common respiratory disease 

that affects a large proportion of the population 

and is associated with a loss of work productivity 

and economic losses. There has been known to 

be a genetic link in the onset of allergic rhinitis, so 

we aimed to identify correlated SNPs using a 

novel support vector machine (SVM) method. We 

gathered our genetic data from a publicly 

available database and one-hot encoded the SNP 

files. Then, we created sparse matrices to reduce 

random access memory (RAM) and ran a SVM to 

classify individuals on the basis of allergic rhinitis, 

as well as identify key SNPs. Our model achieved 

moderately high accuracy/macro F1 score and 

identified 736 genome-wide significant SNPs. 

Analyzing these SNPs further, we found a 

common gene associated with many of the 

discovered allergic rhinitis-associated SNPs. This 

study furthered the knowledge in understanding 

the onset of allergic rhinitis and introduced using 

SVMs in analyzing the genetic implications of 

allergic rhinitis. 

Keywords: Allergic Rhinitis, Support Vector 

Machine, Single Nucleotide Polymorphisms 

Introduction 

Allergic rhinitis, also known as hay fever or 

seasonal allergies, is a predominantly mild health 

condition that induces symptoms similar to that of 

the common cold (Wheatley & Togias, 2015). 

Inflammation of the nasal canal, as well as the 

lower respiratory system (due to the many 

functional relationships between the nasal canal 

and the lower respiratory tracts), is prevalent in a 

patient when one is experiencing symptoms 

(Small & Kim, 2011). Individuals with allergic 

rhinitis experience these symptoms when 

exposed to an allergen, such as pollen or dust 

(Varshney & Varshney, 2015). The body naturally 

releases histamine, which can trigger allergic 

rhinitis (Church & Church, 2016). Adults with 

allergic rhinitis account for around 10-30% of the 

adult population in the United States, making 

allergic rhinitis the fifth most common chronic 

disease (Tran, Vickery, & Blaiss, 2011). 

Furthermore, there are many economic losses 

associated with allergies. In 2005 alone, there 

was an estimated $11.2 billion cost for medical 

bills for allergic rhinitis (Tran, Vickery, & Blaiss, 

2011). Decreased productivity in workers 

accounts for 3.5 million lost workdays, making 

allergic rhinitis the fifth costliest disease as well 

(Tran, Vickery, & Blaiss, 2011). 

The causes of allergic rhinitis are 

numerous, however many experts attribute it to a 

combination of an individual’s environment and 

genetics. While this paper will not delve into the 

environmental variables of seasonal allergies, the 

genetic basis of allergies is still highly influential in 
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determining its incidence. Several studies have 

displayed the extensive strength of the role of 

genetic inheritance. One study found that 

monozygotic twins showed a concordance of 45-

60% probability of the onset of allergic rhinitis 

while dizygotic twins had a 25% rate of correlation 

(Tran, Vickery, & Blaiss, 2011). Atopy is a trait 

among individuals that helps describe the 

incidence of allergy-based diseases in individuals 

(Bellanti & Settipane, 2017). Some papers imply 

that atopy is both genetic and environmental, 

which assist in displaying the intertwined 

relationships of both genetic and environmental 

factors (Wang, 2005). The current exploration of 

the genetics of allergies is still unclear, as 

concrete genetic evidence is scarce. Several 

genes are known to be correlated with allergic 

rhinitis; however, their contribution to the disease 

is not fully understood. Using a novel 

computational method, support vector machines 

(SVMs), we aim to discover important loci 

associated with allergic rhinitis. In doing so, we 

hope to be able to close the gap in identifying 

genetic evidence for the onset of allergic rhinitis. 

 

Review of Literature 

Currently, many of the genes discovered 

by scientists known to influence allergic rhinitis 

are only weakly correlated and their explicit 

function in determining the onset of allergic rhinitis 

is largely unknown. Recently, though, through 

genome-wide association studies (GWASs), 

several loci have been discovered. A novel GWAS 

conducted in 2018 identified 20 new loci that 

could possibly be associated with allergic rhinitis 

(Waage et al., 2018). However, some of these 

results have yet to be replicated and confirmed by 

other researchers. GWAS is the most common 

method for discovering genetic variants as it is an 

effective way to discover single-nucleotide 

polymorphisms (SNPs) and different alleles 

throughout the entire genome of an individual (as 

opposed to focusing in on a specific chromosome 

or part of a chromosome) (Bush & Moore, 2012). 

Another recent study has shown a link in 

the onset of allergic rhinitis along with asthma and 

eczema. Ferreira et al. (2020) deployed a GWAS 

discovering 76 possible genetic variants 

associated with a grouping of the 3 traits. 18 of 

the 76 identified were novel findings in the field, 

while the other findings helped to solidify genetic 

evidence for allergic rhinitis, asthma, and eczema 

(Ferreira et al., 2020). The group also looked at 

the correlation of the phenotype along with the 

age at which the subjects attained the allergenic 

disease (Ferreira et al., 2020). In another study, 

Forno et al. (2012) focused on the early age of 

onset of asthma in which GWAS was able to be 

effectively utilized in discovering SNPs. 

 

 

 

FIGURE 1. The process of a GWAS starts with 

identifying two cohorts-one group with the 

disease of interest, and one without. Next, the 

unknown DNA gets injected into a microarray, 

typically made of glass, and the microarray's 

nucleotide sequences act as probes to attach 

onto the injected DNA. Lastly, a microarray 

software scans the microarrays for SNP patterns 

in each subject's DNA chip. 
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However, other researchers have taken 

other approaches using more machine learning-

based methods. So far, these methods have been 

utilized in detecting other diseases such as 

asthma and autism. Pandey et al. (2018) used a 

combination of machine learning techniques such 

as linear regression, SVM-linear, and random 

forest to detect nasal biomarkers to classify 

individuals for diagnosis of asthma. Similar 

machine learning methods were employed in a 

study to identify subjects with Autism Spectrum 

Disorder (ASD), as well as the genes associated 

with the disorder (Asif, Martiniano, Vicente, & 

Couto, 2018). There has yet to be a study on 

utilizing SVM on classifying the loci associated 

with allergic rhinitis. 

 

Purpose 

Our first objective was to create a model to 

perform binary classification on a subject given 

their SNP data. Even with genetic data, we aimed 

to produce a model with a high macro F1 score 

and accuracy. Additionally, we intended to use 

the SVM model to determine which genes 

influence the onset of allergic rhinitis, as well as 

the weight of these genes. 

 

Data 

Dataset 

We retrieved our SNP data from the 

publicly-available database, The Personal 

Genome Project. Established in 2005 at Harvard 

University, The Personal Genome Project (PGP) 

spans 5 countries, each with their own respective 

database. As each database consisted of varying 

degrees of information, we extracted data only 

from the Harvard PGP group. 

The SNP data for each individual were 

from various labs. We only used the data 

generated from the 23andme lab in order to have 

a consistent format. Each individual file consisted 

of four features: rsID, chromosome number, 

position, and genotype. The genotype column 

was composed of two alleles on the forward 

strand of DNA, one from each parent. 

To create our experimental and control 

groups from this database, we analyzed surveys 

that were self-reported by PGP participants. We 

designed our experimental group from the 2,128 

responses to the PGP Trait and Disease Survey 

2012: Respiratory System. We extracted the 

control group from the “whole genome sequences 

and other data” section, rejecting any matching 

experimental subjects chosen from the survey. 

Our control and experimental groups consisted of 

both male and female participants, and the SNP 

data submission dates ranged from January 2011 

to July 2020. Our final experimental group 

consisted of 99 files, while our control group 

consisted of 102 files. 

Preprocessing 

In order to utilize a machine learning model, 

we had to encode our categorical data into 

vectors in a machine-readable format. This 

process is done in many different machine 

learning cases when dealing with categorical data. 

Models such as convolutional neural networks 

(CNN) and logistic regression are often used with 

some form of categorical variable encoding.  

As encoding genetic data has become 

popular in the machine learning field, there have 

been different methods that researchers have 

proposed to encode large amounts of data. In 

order for a program to categorize disorders 

influenced by genetics, the nucleotide sequence 

must be preprocessed and encoded. Nguyen et 

al. (2016) proposed grouping nucleotides in 

windows of 3 and one-hot encoding vectors of 

length 64. Another study introduced the usage of 

ordinal encoding in genetic data where the 

researchers compared the performance between 

one hot encoding and ordinal encoding (Choong 

& Lee, 2017). While one-hot encoding is more 

popular, it requires vectors and matrices to be 

restricted to certain dimensions (Choong & Lee, 

2017). It was found that ordinal encoding required 

less memory and faster training speeds (Choong 

& Lee, 2017).  

While vectorization can take many different 

forms, the method we used was one-hot encoding. 

One-hot encoding first denotes a unique integer 

to every possible value. In our data, these 

encoded values were the allele pairs. Next, a 

zeroed vector of length n—where n is the number 
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of unique allele pairings—was constructed for 

each SNP. Our SNP vectors each had a length of 

27. In each vector, a 1 was placed in the index 

that was associated with the respective allele 

combination. Lastly, in a zeroed matrix (shape d × 

n) with 2,050,307 rows, each row corresponding 

to a unique rsID, we inserted the SNP vector in 

the row's index unique to the associated rsID of 

the SNP. We created 201 unique matrices for 

each individual SNP data file. These 201 matrices 

were split by a 80:10:10 split for the train, 

validation and test set respectively.  

As our matrices consisted mainly of zeros, 

we transformed our 2-D Numpy tensors into 

sparse matrices. This was done by utilizing 

SciPy's sparse class.  

Next, we concatenated each matrix 

together, grouping the experimental and control 

group separately as to segregate the two classes 

for ease of labeling purposes. In order to avoid 

concatenating our 2-D matrices (2050307 × 27) 

together to create a 3-D tensor (201 × 2050307 

× 27), we instead compressed our 201 2-D 

matrices into 1-D vectors (1 × 55358289), and 

combined the 1-D vectors to create a single 2-D 

matrix (201 × 55358289), comprised of all 201 

subject SNP files. 

 

Methodology 

Model 

The main machine learning method we 

used was the support vector machine (SVM). The 

SVM is a machine learning classification tool used 

to separate classes and designate a hyperplane 

that maximizes the distance between two classes. 

This hyperplane is created through examining 

support vectors-data points that lie the closest to 

the boundary where the classes meet-and finding 

the maximum margin between the distinguished 

classes. The hyperplane is defined as follows: 

𝑤 ×  𝑥𝑖  +  𝑏 =  0 

We were able to find the optimal 

hyperplane that categorized subjects on whether 

or not they were likely to contract allergic rhinitis, 

as well as several SNPs associated with allergic 

rhinitis as defined by passing the genome-wide 

significance threshold of 𝑝 𝑣𝑎𝑙𝑢𝑒 =  5 ×  10−8. 

Our training data consisted of a number of 

subjects diagnosed with allergic rhinitis, as well as 

a control group. The tested model was able to 

classify different individuals on the basis of having 

allergic rhinitis or not. Additionally, we aimed to 

create a model that outputs the highest accuracy 

possible. In terms of individual classification, the 

support vector machine found the optimal 

hyperplane in which to separate the two classes. 

These two classes were our control and 

experimental group. A benefit of using support 

vector machines is that they are effective in 

analyzing high dimensional data, even if the 

number of dimensions outnumbers the number of 

samples. As there are a high number of 

dimensions (upwards of a million) in our model, 

this classification task is feasible due to the nature 

of support vector machines. 

Once our model was able to adequately 

classify each subject, we dissected the model to 

discover the most influential SNPs. This was done 

by observing the coefficients of each feature—the 

SNP—in our model as shown below: 

 

 
 

The prediction model seeks to minimize 

each weight to fit the data optimally. Additionally, 

we used L2 regularization to further minimize the 

weights, and only focus on the heavy weight 

values. This method proved to result in a higher 

accuracy than L1 regularization, displaying the 

notion that many weights rather than fewer are 

crucial to categorizing allergic rhinitis. After L2 

regularization with an inverse regularization 

strength of 1, we observed the highest 

coefficients from our model to determine which 

SNPs considerably influenced allergic rhinitis. 
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We introduced a new method to 

discovering SNPs associated with allergic rhinitis 

by dissecting each feature's weight in our model 

to analyze the highest impact weights. We found 

the weights with the highest absolute value and 

assuming a normal distribution, we took a two-

tailed z-test to find each weight's p value. This 

revealed not only the SNPs that positively 

influence the onset of allergic rhinitis, but also 

revealed the SNPs that negatively influenced the 

incidence of allergic rhinitis. 

FIGURE 2. Our study utilized the SVM's weights 

to analyze important SNPs. We took the absolute 

value of each weight to find both positive and 

negative correlations. The figure contrasts each 

weight by displaying whether the identified SNP 

was positively or negatively correlated with 

allergic rhinitis, as well as to what extent. 

 

Results and Discussion 

Our final model achieved a macro F1 score 

of 0.74 on a relatively small test set of 23 data 

points (12 experimental and 11 control). 

Additionally, the model's accuracy was also 0.74. 

We experimented with several values of C, 

however, they each gave us the same macro F1 

score and accuracy. The values we tested for C 

were 0.001, 0.01, 1, 100, and 1000. We also 

experimented with a radial basis function kernel. 

With values of C=10 and C=100, we received a 

macro F1 score of 0.73 and an accuracy of 0.74. 

However, with a value of C=1, our macro F1 score 

dropped to 0.62 with an accuracy of 0.65.  

In terms of SNP discovery, we found a total 

of 736 genome-wide significant (p value <5 ×
 10−8 ) SNPs. 381 of the significant SNPs 

positively correlated with allergic rhinitis, while 

355 of the genome-wide significant SNPs 

negatively correlated with allergic rhinitis. We 

looked at the 20 most prominent positively 

influential SNPs and matched each with a gene, if 

applicable. Out of these 2 SNPs, four of them 

were associated with the gene EVI5 (rs10735781, 

rs6680578, rs11808092, and rs4847267). The 

EVI5 gene was the most prominent result in our 

findings in analyzing the top 20 positively 

influential SNPs. Other genes correlated with 

these 20 SNPs were PALM2AKAP2 (rs1980874), 

LOC105370922 (rs7163642), TMEM132C 

(rs4882801), ARHGAP35 (rs10425259), ZP3 

(rs3789833), and OPCML (rs12418625). 10 of 

the examined SNPs did not have any close 

relation to a specific gene. 

Our results show a grouping of influential 

SNPs on the EVI5 gene, which provides evidence 

towards the conclusion that there is a link 

between the gene and the incidence of allergic 

rhinitis. The other genetic variants discovered 

may also play a role in the pathophysiology of 

allergic rhinitis or a similar respiratory disease. 

Unfortunately, due to the nature of self-reported 

data, these surveys cannot be guaranteed to be 

completely accurate, as the individual could have 

withheld information or reported false information. 

Similarly, some participants may have chosen not 

to answer the survey, so in creating our control 

group, we cannot be 100% confident that every 

control individual was aseptic to allergic rhinitis. 

These imprecisions are a possible explanation for 

our moderate model accuracy. 
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TABLE 1. We examined 44 of the most prominent SNPs, including negatively correlated SNPs as well. 

The highest p value was from a negatively correlated SNP with a value of 1.34E-19. We display the rsID 

of the SNP, the nucleotide bases of the SNP and each SNPs p value. Additionally, the last column 

displays whether the corresponding weight from the SVM was a positive or negative influence. 

rsID genotype p value +/- 

rs303727 TA 1.34E-19 Negative 

rs10821080 T 6.15E-17 Positive 

rs10735781 ID 1.56E-16 Positive 

rs1980874 I 3.03E-16 Positive 

rs7163642 GT 2.76E-15 Positive 

rs6680578 TC 6.08E-15 Positive 

rs4882801 G 4.99E-14 Positive 

rs10425259 AT 6.89E-14 Positive 

rs7828114 CT 9.02E-14 Negative 

rs12913 AT 1.07E-13 Negative 

rs2211938 AT 1.15E-13 Positive 

rs6730045 GG 1.43E-13 Negative 

rs1040411 CC 1.58E-13 Negative 

rs4633807 TA 1.86E-13 Positive 

rs9951150 GT 2.25E-13 Positive 

rs2354178 GG 2.54E-13 Negative 

rs1801274 GT 3.92E-13 Negative 

rs7526587 AA 5.13E-13 Positive 

rs7158744 GA 5.32E-13 Negative 

rs958898 TT 7.24E-13 Negative 

rs11808092 CA 9.56E-13 Positive 

rs2415290 TT 1.12E-12 Positive 

rs550915 CA 1.41E-12 Negative 

rs6604026 GC 2.48E-12 Negative 

rs337277 D 3.17E-12 Negative 

rs4847267 A 3.75E-12 Positive 

rs6733711 GG 4.12E-12 Negative 

rs11120923 CA 4.93E-12 Negative 

rs4078690 T 7.36E-12 Negative 

rs198178 CC 7.76E-12 Negative 

rs9612352 ID 8.49E-12 Negative 

rs11764618 TG 8.78E-12 Negative 

rs1522679 AT 9.29E-12 Negative 

rs6583565 DD 9.57E-12 Positive 

rs6896806 -- 1.03E-11 Negative 

rs3789833 C 1.11E-11 Positive 

rs6690126 AC 1.17E-11 Positive 

rs12418625 AC 1.30E-11 Positive 

rs9450450 AA 1.32E-11 Positive 

rs587771 T 1.35E-11 Negative 

rs4502845 TG 1.44E-11 Negative 

rs11666652 CC 1.49E-11 Negative 

rs2825493 TC 1.88E-11 Positive 

rs1483578 GG 2.03E-11 Negative 
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Nevertheless, the novel use of an SVM in 

gene detection took advantage of machine-

learning capabilities to assign SNPs to features of 

our model and predict associations. While the 

current optimal method to identify loci in modern 

genetic studies is genome-wide association 

studies, the use of an SVM has benefits over a 

GWAS. Primarily, SVMs are able to function 

moderately accurately with a relatively small 

sample size. Most GWAS are performed with 

thousands of experimental subjects, with an equal 

sized control group. However, this study 

managed to draw conclusions with only 201 

subjects.  

Naturally, the performance of our SVM 

model and the validity of our identified SNPs 

would improve with a larger sample size. However, 

due to the limited size of our database, we were 

unable to increase the batch size for our model. 

Despite this limitation, we were still able to prove 

the effectiveness of a SVM. 

 

Conclusion 

Our model achieved a moderately high 

accuracy and was able to identify crucial SNPs 

that characterized the onset of allergic rhinitis. 

While our macro F1 score may be modest in the 

machine learning field, we think that our SVM 

model is robust due to the multifactorial nature of 

the genetic basis for disease. Our work can be 

expanded further and would benefit from a larger 

sample size to increase the accuracy of our model 

and our findings. Nonetheless, our SNP findings 

may lead to understanding the implications of the 

pathways and functions that each gene serves in 

the development of allergic rhinitis. Lastly, our 

introduction to using SVMs and machine-learning 

methods that rival GWAS studies may allow for 

researchers to discover certain SNPs without 

having to collect such a large cohort of subjects. 
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