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Abstract 

Histoplasmosis disease is caused by the 

dimorphic switch of the Histoplasma capsulatum 

fungus. Predicting the Translational Efficiency 

(TE) for Histoplasma capsulatum will lead to 

techniques that can regulate its protein 

production and thereby help in the treatment of 

Histoplasmosis. However, what sequence 

elements in the mRNA determine TE in 

Histoplasma is not well understood. The 5' 

Untranslated region (UTR) of 4981 genes 

common to 4 strains of Histoplasma were 

explored to identify the correlation between the 

longest 5 Upstream Open Reading Frame 

(uORFs) with start codon ATG, length of the 5' 

UTR, the energy of constrained secondary RNA 

structure, CG-to-ATG ratio and TE, using 

Wilcoxon tests, normal distribution plots, and 

Area under the receiver operating characteristics 

(ROC) curve. Subsequently, using all these 

sequence elements as features, four 

computational models were developed using 

different machine learning algorithms to predict 

TE. The results demonstrate that the maximum 

length of uORF with start codon ATG and the CG-

to-ATG ratio have the best correlation to TE with 

the highest Area Under the Curve (AUC) amongst 

all sequence elements at 0.74 and 0.79, 

respectively. Also, computational model created 

using Random Forest outperformed other models 

to best predict TE with an AUC of 0.85. This 

research helped identify a set of sequence 

elements that affect TE in Histoplasma 

capsulatum and also showed that computational 

models can be created for predicting the TE of 

Histoplasma. 
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Introduction 

Histoplasma capsulatum is a fungus that has a 

yeast form and a mold form (Gilmore et al. 2015; 

Inglis et al. 2013). They reside in soils. They are 

commonly found in the Ohio and Mississippi River 

Valleys, as well as in other parts of the world (Bahr 

et al. 2020). People typically inhale the 

microscopic spores when the environment in 

which Histoplasma fungi lives in, is disturbed 

(Centers for Disease Control and Prevention, 

2021). When the microscopic spores in the mold 

form enter a human body, the fungus performs a 

dimorphic switch, turning into yeast (Gilmore et al. 

2015; Beyhan & Sil 2019). In its yeast form 

Histoplasma capsulatum causes a disease called 

Histoplasmosis. Each year, up to 250,000 people 

in the U.S. are found to have Histoplasmosis 

(Fayyaz et al. 2020). The disease does not spread 

because of person-to-person contact (Stöppler 

2020; Beyhan & Sil 2019). 
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Symptoms of Histoplasmosis include fever, 

cough, fatigue, chills, headache, chest pain, and 

body aches (Kauffman 2007). The spectrum of 

the infection includes mild, acute, chronic, and 

life-threatening sepsis (Kauffman 2007, Wheat et 

al. 2000). Although the disease is not easy to 

diagnose, the disease mostly goes away in a few 

weeks (Kauffman 2007, Knox & Hage 2010).  

When it becomes acute or chronic, antifungal 

medication is required (Knox & Hage 2010). 

Chronic pulmonary histoplasmosis if left untreated 

can have a mortality rate of 50% and with 

treatment it can have a mortality rate of 28% 

(Stöppler 2020).  

 

Doctors diagnose Histoplasmosis through CT 

scans and X-rays (Stöppler 2020; Wheat et al. 

2007). There is no vaccine against the disease. 

There are no drugs that specifically target the 

disease (Stöppler 2020; Wheat et al. 2000). 

Doctors recommend common antifungal 

medications of Itraconazole and amphotericin B 

for Histoplasmosis; patients with severe 

Histoplasmosis undergo treatment for several 

months (Wheat et al. 2000). Besides 

Histoplasmosis, Ocular histoplasmosis is most 

common in people who are exposed to the fungus 

at a very young age (U.S. Department of Health 

and Human Services, 2020). It happens when the 

fungus spreads from the lungs to the eyes. Early 

diagnosis and treatment are essential in 

preventing vision loss. 

  

Existing State of Research  
The Sil lab in the University of California - San 

Francisco (UCSF) has used mRNA sequencing 

and ribosomal footprinting to calculate the 

Translational Efficiency (TE) for each gene in four 

different strands of Histoplasma: G217B, HcH88, 

HcG186AR, and HcH143 (Gilmore et al. 2015). 

TE is measured as the footprint counts over 

mRNA counts. Researchers use TE as a key tool 

in measuring changes in RNA levels between 

different cell states. It is used as an indicator of 

protein production. By observing the sequence of 

the genes, the researchers have hypothesized 

that the immense variance in translational 

efficiencies for long and short DNA sequences 

could be because tRNA reads the stop codon 

prematurely after reading the start codon, which 

may result in the entire DNA message not getting 

translated accurately (Gilmore et al. 2015; 

Beyhan & Sil 2019). Even though the researchers 

noted several biomarkers that “may” influence TE, 

they have not found the actual list of biomarkers 

or sequence elements that best correlate with TE 

(Gilmore et al. 2015; Arribere & Gilbert 2013). 

Also, researchers have not figured out how they 

can use biomarkers to predict the TE 

computationally. 

 

Goals 

The goals of this research are the following: 

• Identify sequence elements that affect TE in 

the yeast form of Histoplasma. 

• Create a computational model to predict the 

TE in the yeast form of Histoplasma. 

 

Methodology 

Data from HistoBase database in the Sil Lab, 

UCSF was used in this study. Python code was 

developed to extract data from the database for 4 

strains of Histoplasma, each with over 6500 

genes. The 4 strains were G217B, HcH88, 

HcG186AR, and HcH143. Then, data was filtered 

to contain similar genes across 4 strains which 

resulted in 4891 genes. Subsequently, different 

sequence elements in the 5' Untranslated Region 

(UTR) were examined and its correlation to TE 

was determined using normal distribution curves, 

scatter plots, Wilcoxon tests, and Receiver 

Operating Characteristics (ROC) curves.  

 

The following sequence elements were 

investigated to determine their correlation to TE: 

1. Length of the Upstream Open Reading 

Frames (uORFs): The uORFs were chosen 

because in eukaryotic mRNAs, the translation 

of the protein requires the translation of 

uORFs (Gilmore et al. 2015). These biological 

structures aid in repressing or non-repressing 

the gene, which can lead to lower or higher 



3 
The International Young Researchers’ Conference, October 16-17, 2021, Virtual 

 

TE values respectively (Gilmore et al. 2015; 

Arribere & Gilbert 2013). The maximum 

length of the uORF was chosen because we 

hypothesized that greater length could have 

a higher influence on the initiation of 

translation. To get the largest length of the 

uORF, code was developed to extract the 

start and end points of the different uORFs, 

and their difference was taken for the 4981 

genes. To determine if there is a correlation 

between TE and length of the uORFs, a 

scatter plot and a box plot were plotted. A 

Wilcoxon test was used to verify the results. 

Code was developed to calculate the true 

positive rate (TPR) and the false positive rates 

(FPR) using the data from the scatter and box 

plots and Receiver Operating Characteristic 

(ROC) curve was generated. 

 

FPR = (False Positives)/ (Total Negatives) 

= (False Positives)/ (False Positives + True 

Negative) 

 

TPR = (True Positives)/ (Total Positives) 

= (True Positives)/ (True Positives + False 

Negatives) 

 

The ROC plot was analyzed to determine if TE 

was affected by length of the uORFs. 

 

2. Secondary RNA structure: The energy of 

constrained secondary RNA structure was 

studied to see if secondary structures such as 

hairpin or loops could interfere with 

translation. A ROC curve using the energy of 

the constrained RNA structure against TE 

was plotted to determine if there was any 

relation between them. 

3. Length of the 5' UTR: 5' UTR is the region 

directly upstream of the start codon. Previous 

studies show that genes that had a low length 

of 5' UTR sometimes had a low maximum 

length of uORFs, and those genes are 

translationally repressed (Gilmore et al. 

2015). The length of the 5' UTR as a predictor 

of TE was evaluated by plotting a ROC curve. 

4. CG to ATG ratio in uORFs: In the nucleotides, 

CG has 3 hydrogen bonds while AT has 2 

hydrogen bonds. Since the RNA unzips the 

DNA by breaking Hydrogen bonds, the effect 

of CG to ATG ratio on TE was evaluated using 

a ROC curve. 

After examining the individual sequence elements 

and their relation to TE, the effect of the combined 

sequence elements was used to predict TE. 

Derived features consisting of the sum of the top 

five uORFs and the ratio of the sum of the top five 

uORFs to the length of 5’ UTR were also used as 

part of the combined input. Computational 

models were built using Linear Regression, Lasso 

Regression, Decision Tree Regression, and 

Random Forest which are four different 

supervised machine learning (ML) algorithms to 

evaluate how well the combined features 

contributed to predicting TE. High variance in the 

input data was mitigated using standard scaler 

function of Sci-kit learn Python library. The 

standard scaler transforms the data to ensure that 

the standard deviation of the data is one and the 

mean of the data is zero.  Input data was randomly 

split into training, test, and validation sets in 

70:20:10 ratio. 10-fold cross validation was used 

while training the data to build the computational 

models. ROC plots, root-mean-squared-error 

(RMSE), and r-squared score were used to 

compare the effectiveness of the different ML 

models to predict TE. Figure 1 shows the workflow 

for building the computational models. 

FIGURE 1. Workflow for building the 

computational models using Machine learning to 

predict TE 
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Results 

The frequency distribution of TE values using a 

logarithmic scale is shown in Figure 2.  The 

correlation between TE and length of the uORFs 

was visualized using a scatterplot as shown in 

Figure 3a. The scatter plot of maximum uORF 

lengths using ATG as the start codon vs. TE 

values is shown in Figure 3b. The Boxplot of the 

maximum length of a uORF across different genes 

is shown in Figure 4. The true positive (TPR) and 

the false positive rates (FPR) were calculated 

(Table 1) computationally using a threshold value 

of -2 and are plotted to generate a Receiver 

Operating Characteristic (ROC) curve in Figure 

5a. The ROC plot of energy of the constrained 

RNA structure vs. TE is shown in Figure 5c. The 

ROC plot of the relationship between length of the 

5’ UTR and TE (in blue) using True Positive Rate 

(tpr) vs False Positive Rate (fdr) is shown in Figure 

5d. The ROC plot of the  relationship between 

CG/ATG ratio and TE (in green) using True 

Positive Rate (tpr) vs False Positive Rate (fdr) is 

shown in Figure 5e. 

 

To evaluate the quality of the results of the various 

ML algorithms, three standard metrics were used: 

ROC curves, root-mean-squared-error (RMSE), 

and r-squared score.  

Linear regression gave a training RMSE of 1.65, a 

testing RMSE of 1.67, a testing r2 score of 0.23, 

and a training r2 score of 0.27. Figure 6a shows 

the coefficients of the features used in the linear 

regression algorithm.  

Lasso regression gave a training RMSE of 1.63, a 

testing RMSE of 1.72, a testing r2 score of 0.16 

and a training r2 score of 0.23. Figure 6b shows 

the coefficients used for Lasso regression 

algorithm. Figure 5g compares the ROC plots of 

the Lasso Regression with the maximum length of 

the uORF.  

 

The Decision Tree Regressor gave a training 

RMSE of 1.64, a testing RMSE of 1.79, a testing 

r2 score of 0.2, and a training r2 score of 0.23. 

Figure 5h compares the ROC plots of the Decision 

Tree to the maximum length of the uORF.  

 

Random Forest gave a training RMSE of 1.37, a 

testing RMSE of 1.39, a testing r2 score of 0.47, 

and a training r2 score of 0.46.  Figure 5i 

compares the ROC plots of Random Forest with 

the maximum length of the uORF.  Figure 7 shows 

Figure 6a. Coefficient values of the features used in 

Linear Regression  

Figure 6b. Coefficient values of the features used 

Lasso Regression 
Table 1. The confusion matrix for the classification 

of TE prediction 
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the comparison of the various ROC plots with 

each other. 

 

Discussions 

Figure 2 indicates that the frequency distribution 

of TE is not a normal distribution. Under ideal 

conditions, the number of footprint counts will be 

equal to mRNA counts but the graph indicates a 

spike in the values between -2 and 2. 

 

Upstream Open Reading Frames (uORFs) vs. TE 
Figure 3a depicts a weak negative correlation 

between the TE values and maximum length of 

the uORFs, where each dot represents a gene 

common across all four strains of Histoplasma: 

HcG217B, HcH88, HcH143, HcG186Ar. Figure 4 

conveys that the length of the largest uORF 

indeed significantly distinguishes translationally 

repressed genes from neutral genes. This was 

verified through the Wilcoxon test, in which the P-

Value was 2.2e - 16. Based on Figure 3a and 

Figure 4, a threshold value of -2 was chosen to 

generate a Receiver Operating Characteristic 

(ROC) curve in Figure 5a.  

 
 

 

Figure 2. Frequency distribution of TE values 

Figure 3. Scatter plot of maximum uORF lengths 

vs TE values for a) with any start codon b) using 

ATG as the start codon 

Figure 4. Boxplot of the maximum length of a 

uORF across different genes 

Figure 7. Relative comparison of the ROC plots for 

various learning models 
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Analysis of the ROC plot of the maximum length 

of uORF vs. TE has area under the curve (AUC) 

of 0.68 which predicts TE better than mean value. 

It shows that the maximum length of uORF works 

as a good predictor of TE (i.e., the genes that 

were repressed have a correlation with maximum 

length of uORFs). However, in this case any start 

codon was used when calculating the maximum 

length of the uORF. ATG (i.e. AUG) is the start 

codon of mRNA as it is first to undergo translation 

after transcription. When the analysis was 

repeated using the ATG start codon (vs. the use 

of any start codon in the previous analysis), it was 

observed that there still existed a weak negative 

correlation between the open reading frames and 

the translational efficiency (Figure 3b). However, 

the ROC for this scenario with only ATG as start 

codon, revealed a bigger area under the curve 

with AUC = 0.74 (Figure 5b) compared to the 

previous ROC curve. Therefore, the maximum 

length of uORF with start codon ATG correlates 

better to TE. 

 
Secondary RNA structure vs. TE 
The ROC plot (Figure 5c) of energy of the 

constrained RNA structure vs. TE showed that 

RNA structure does not correlate well with TE. In 

fact, the second half of the ROC plot conveys that 

the probability of predicting TE is less than the 

probability of randomly flipping a coin. 

 

Length of 5' UTR vs. TE 
In the ROC plot (Figure 5d) of the length of 5' UTR 

vs. TE showed that the curve of the uORFs with 

start codons of “ATG” (in red) performs better 

than the length of the 5’ UTR (in blue). 

Nevertheless, the correlation between TE and 

length of 5’ UTR with AUC = 0.63 was better than 

the average value. 

 

 

Figure 5. ROC plot showing the relationships between a feature/predictor and TE  |  a) maximum uORF 

length for any start codon (in black dots)   |  b) maximum uORF length with ATG start Codon (in red)  |   c) 

energy of constrained secondary RNA structure (in purple)  |   d) length of the 5’ UTR and TE (in blue)   |  

e) CG/ATG ratio (in green)   |  f) Linear regression (in green)  |   g) Lasso regression (in purple)   |  h) 

Decision Tree Regressor (in purple)  |   i) Random Forest Regressor (in green) 
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CG to ATG ratio in uORFs 
The ROC plot (Figure 5e) with AUC = 0.79 shows 

that there is a very good correlation between the 

CG/ATG ratio (in green) and TE and it performed 

better than uORFs with start codons of “ATG” (in 

red). 

 

Linear Regression 
From Figure 6a, we can infer that low R-squared 

values are due to high variance in the data. The 

coefficients also indicate that the sum of the top 

five uORFs as well as the maximum length of the 

uORF per gene has a high correlation with TE.  

Figure 5f compares the ROC plots of the Linear 

Regression with the maximum length of the uORF. 

The ROC plot shows that Linear regression using 

all the features does slightly better with AUC = 

0.75 than just using the maximum length of the 

uORF (AUC = 0.74).  

 

Lasso Regression 
Since there is some difference between both the 

RMSE and the r-squared scores, Lasso model 

slightly overfits the data. Contrary to the Linear 

regression model, the sum of the top five uORFs 

and the maximum length of the uORF did not have 

a high coefficient value. Instead, the second and 

third largest uORF lengths had the highest 

coefficient values. The ROC plot in Figure 5g 

shows that Lasso regression (AUC = 0.74) 

performs the same as the maximum length of the 

uORF and does not add any better performance 

compared to Linear regression. 

 

Decision Tree 
The algorithm slightly overfits because of the 

difference between the RMSE scores for training 

and testing. The ROC plot in Figure 5h shows that 

the Decision Tree (AUC = 0.69) performs worse 

than the maximum length of the uORF predictor.  

 

Random Forest 
Unlike the previous algorithms, Random Forest 

performed substantially better with AUC = 0.85 

(Figure 5i) compared to the maximum length of 

the uORF predictor.  

Comparing all results 
The sequence elements CG to ATG ratio and 

maximum length of uORF with ATG as the start 

codon, each by themselves alone, gave the best 

performance with AUC at 0.79 and 0.74 

respectively and therefore demonstrated the best 

correlation with TE for single features. The uORF 

with ATG as the start codon acts as a better 

predictor than uORF with any start codon 

because the former (relatively speaking) 

potentially increases the likelihood of translation 

starting before it reaches the main functional 

ORF. The length of 5’ UTR to predict TE (AUC = 

0.63) was not a good predictor of TE compared to 

the above two sequence elements. The biological 

reason why the length of 5’ UTR predictor is 

possibly worse than the largest uORF predictor 

could be that the length of a UTR and the 

maximum length of uORF are not well correlated 

with each other, i.e. you can have a long 5’ UTR 

region with many small length uORFs in it. The 

Secondary RNA structure was the poorest 

predictor of TE possibly because the positions of 

the hairpins are probably not ideal to influence the 

initiation or repression of translation. 

 

The different learning models can be assigned to 

the categories of 1) Single feature (uORF-no ATG, 

5’ UTR length, uORF - ATG) 2) Multiple features 

(Decision Tree, Linear, Lasso) and 3) Ensemble of 

multiple features (Random Forest).  

 

The RMSE test and train values for the different 

computational models built using the combined 

sequence elements to predict TE were 

comparable and had little to no overfitting. The 

low r-squared values in all models indicated that 

the data has high variance. Lasso regression 

model (AUC = 0.74) and Linear regression model 

(AUC = 0.75) performed comparably to the 

maximum length of uORF with ATG as the start 

codon (AUC = 0.74) and CG to ATG ratio (AUC = 

0.79). Decision trees model performed slightly 

worse with AUC of 0.69. Random forest model 

performed best with AUC at 0.85 and had lowest 

RMSE of 1.37. The ensemble method of Random 
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Forest works better than the individual Decision 

trees model because the individual model tends 

to make different types of errors on the subset of 

features chosen, and many of those errors cancel 

each other out in the ensemble method (Géron, 

2020).  Overall, the combination of multiple 

features, except when using Decision Trees, 

yielded slightly better results compared to using 

single features while predicting TE. This is to be 

expected as a model with multiple features has 

more information in building the decision 

boundary of a classifier.   

 

The features and methods used in the prediction 

of TE in Histoplasma capsulatum can be applied 

to other single-cell eukaryotic organisms to 

improve our insight into how the sequence 

elements in the 5’ UTR affects translation in other 

eukaryotic organisms. This would also make the 

findings from this research useful in the research 

of other diseases, not just Histoplasmosis. 

 

Conclusions 

This research was the first to discover two 

sequence elements, CG to ATG ratio and 

maximum length of uORF with ATG as the start 

codon, in 5’ UTR of mRNA that affect the TE in 

Histoplasma capsulatum. This research was also 

the first to develop four computational models for 

predicting TE of Histoplasma using the combined 

sequence elements. The recommendation is to 

use the computational model developed using 

Random Forest for predicting TE. This research 

improves our understanding of the sequence 

elements in the 5’ UTR affecting the TE of 

Histoplasma capsulatum. In the future, similar 

features and methods can be used to predict the 

TE in other single-cell eukaryotic organisms which 

can improve our understanding of the translation 

process in other organisms. Also, in the future, the 

computational methods used in this research can 

be extended to use deep learning methods and 

clustering methods, and their results can be 

compared with existing models to see if they can 

improve the predictions. 
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