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Abstract  

Agriculture, the supporting backbone to the 

economic growth of many countries, has played a 

significant global role in the economy. With rapid 

technological advancements in various fields 

today, it is important to invest time and effort into 

developing advanced methods to preserve 

agricultural practices. However, the lack of 

technology and expertise in crop disease 

identification is a notorious problem troubling the 

agricultural industry, especially in developing 

countries. This often leads to severe crop loss and 

waste, affecting not only farmers’ yield but also 

consumers’ food intake. Rice leaf disease 

identification, in particular, rises as an important 

issue as rice is a staple food for a large proportion 

of the global population. Specifically, timely and 

accurate diagnosis of rice leaf diseases is crucial. 

To address this issue, this paper implements an 

image-based deep learning approach to identify 

and classify rice leaf diseases presented in a 

dataset derived from a rice field in Sherta located 

in Gujarat, India. This dataset contains 120 

images belonging to three distinct classes: Brown 

Spot, Leaf Smut, and Bacterial. Evaluation 

performances followed by statistical analysis are 

conducted using eight different convolutional 

neural network (CNN) models: Inception V3, 

Vgg16, Vgg19, MobileNet, DenseNet121, 

ResNet101, NASNetMobile, and MobileNet+Bi-

GRU. The best performing model was the 

MobileNet+Bi-GRU model with an accuracy score 

of 87.24%. The experimental results from the 

performance evaluations revealed great potential 

in incorporating deep learning techniques for rice 

leaf disease identification and classification. 
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Introduction 
Background:  
Rice, a starchy cereal grain and grass species 

Oryza Sativa, is a staple food for roughly half of 

the world’s population. With more than 90% of 

rice grown in Asia, practically all of East and 

Southeast Asia are dependent on rice as a staple 

food. Rice yields vary with different conditions, 

ranging from 700 to 4,000 kilograms per hectare 

(Encyclopedia, 2021). India, a global agricultural 

powerhouse with leading production in milk, 

wheat, and rice (India Brand Equity Foundation, 

2021), ranks second highest in rice production 

after China, producing about 110 million metric 

tons of rice per year (Vukotić et al., 2016). 

Agriculture is a livelihood for approximately 58% 

of India’s population. 

With the growing world population, global rice 

demand continues to increase; with a global rice 

demand of 439 million tons in 2010, 496 million 

tons in 2020, to a predicted 555 million tons in 

2035, projections speculate a demand increase 

of 26% in the next 25 years. Hence, it is highly 

likely the 150 million hectares of rice fields 
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available around the world will not suffice for the 

rice demands in the next few years. Because land 

is scarce and expansion is unlikely, global rice 

yields must increase at faster rates of at least 1.2-

1.5% over the next decade, equivalent to 8-10 

million tons more paddy rices each year 

(Ricepedia, n.d.). However, this is extremely 

difficult due to the frequent damages that are 

overlooked in paddy fields from various diseases, 

pesticides, and poor harvest management. Every 

year, farmers lose approximately 37% of their rice 

crops from diseases and pests (Rice Research, 

n.d.). In the world’s most agricultural regions and 

developing nations, unsustainable and deficient 

rice management results in decreasing 

merchantability and rice yield, thereby increasing 

malnutrition and poverty. To make matters worse, 

many farmers lack expertise in agricultural 

management, hence cannot detect or identify the 

potentially harmful diseases in their rice crops. 

In response to the exacerbating dilemma of rice 

diseases, farmers today utilize digital agriculture 

such as Artificial Intelligence (AI), Satellite 

Imagery, and Machine Learning, and other 

advanced analytics resulting in higher crop yield 

and more efficient crop management. In 

particular, in collaboration with Microsoft, farmers 

in India have implemented artificial intelligence 

and machine learning based sowing advisories 

that send automated voice calls that inform 

farmers on the optimal date to sow and alerts prior 

to pest infestation. Another innovation is the 

multivariate agricultural commodity price 

forecasting model to predict crop yields, prices, 

and commodity arrivals at every farming stage. 

This model uses input data from remote sensing, 

geo-stationary satellite images, weather, and 

other datasets to predict measurements with 

accuracy (Microsoft India, 2017).  

Artificial intelligence and machine learning have 

only recently marked their potential in agriculture. 

Such forms of digital agriculture have great 

prospects in providing stability for agricultural 

communities, especially in agriculture-dependent 

developing nations such as India. Additionally, 

with far-reaching impacts of climate change on a 

global scale today, digital agriculture is more 

imperative than ever before. The graph below 

shows the total rice consumption worldwide from 

2008/2009 to 2020/2021 (Shahbandeh, 2021).

FIGURE 1: Total rice consumption worldwide from 2008/2009 to 2020/2021 
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Objective 
The objective of this research is to complement 

rice productivity through early prediction of rice 

leaf diseases such as bacterial blight, leaf smut, 

and brown spot diseases. With early alertness, 

farmers could take precautions to manage the 

spread of diseases to other crops, saving several 

tons of rice from going to waste and increasing 

total rice yield and merchantability. To do so, deep 

learning frameworks such as Inception V3, 

Vgg16, Vgg19, MobileNet, DenseNet121, 

ResNet101, NASNetMobile, and MobileNet+Bi-

GRU were employed to detect potential rice 

diseases in rice crops. Next, a comparative study 

analysis of the performance of each algorithm was 

conducted. Lastly, utilizing Gradient-weighted 

Class Activation Mapping (Grad-CAM) and the 

heatmap feature, images could be processed and 

visualized, identifying notable patterns. This would 

overcome the limitations of deep learning’s black 

box model, thereby increasing the study’s 

applicability in agriculture.  

 

FIGURE 2: Visualization of the given image 

 

Related Works 
In this section, previous work on incorporation of 

deep learning and neural networks on rice 

disease identification and classification, along 

with the accuracy scores for each algorithm, are 

discussed.  

In literature, numerous research papers have 

been published for rice disease identification and 

classification such as using support vector 

machines, automated feature engineering, 

comparisons of various deep-learning models, 

and transfer learning of deep convolutional neural 

networks. 

Firstly, Sethy et al. carried out performance 

evaluations of 13 number CNN models in transfer 

learning and deep feature plus support vector 

machine (SVM) approach. Sethy et al. classified 

four types of rice-leaf diseases, namely bacterial 

blight, blast, brown spot and tungro. Because the 

feature of fc6 had the most significant correlation 

towards classification compared to fc7 and fc8 

features of AlexNet, vgg16, and vgg19, only fc6 

was considered when choosing the best 

classification model. Next, through statistical 

analysis of accuracy, sensitivity, specificity, FPR, 

F1 score, and training time, Sethy et al. concluded 

that the ResNet50 plus SVM model was the best 

classification model in the deep feature approach, 

while in the transfer learning approach, no 

statistical difference among the CNN models 

were exhibited. Among the small CNN models 

and comparable to the ResNet50 plus SVM model 

was the deep feature of mobilenetv2 plus SVM 

(Sethy et al., 2020). 

Das et al. developed a deep-learning based 

automated feature engineering for early rice leaf 

disease prediction for diseases such as leaf blast, 

brown spot, and bacterial leaf blight. After images 

portraying specified portions of various rice leaf 

diseases were identified from a dataset of 10,500 

infected leaves, they were fed into the convolution 

neural network (CNN) model consisting of four 

convolution layers, two fully connected layers, 

and one softmax output layer. Performance 

evaluations were conducted to assess the 

effectiveness of each classifier for rice leaf 

disease prediction. It was observed that the CNN, 

NB, and LR showed relatively better performance 

than other classifiers, having accuracy scores of 

91.07%, 92,16%, and 90.35% respectively. Next, 

Das et al. compared the CNN classifier with other 

rice disease classifiers from previous works, 

depicting how the CNN method nonetheless had 

superior performance than all the other classifiers 

(Das et al., 2020).  

Burhan et al. performed five different deep 

learning models (Vgg16, Vgg19, ResNet50, 

ResNet50V2, and ResNet101V2) using an 

artificial data set classified into four classes, 

namely Hispa, Healthy, Brown Spot, and 

LeafBlast, and a binary classification of Healthy 

Vs. Unhealthy using a dataset of images from rice 
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fields in Pakistan. From the experiment using the 

artificial data set, the ResNet50, demonstrating 

an accuracy score of 75.0, showed the best 

performance. From the experiment using the real 

data set, ResNet101V2, demonstrating an 

accuracy score of 86.799, showed the best 

performance. However, limitations such as having 

a limited number of images in the datasets and 

visible shadows in many of the images hindered 

the efficiency and reliability of the results (Burhan 

et al., 2020). 

Shrivastava et al. utilized a pre-trained deep 

convolutional neural network (CNN) and support 

vector machine (SVM) as their feature extractor 

and classifier, respectively. Experiments were 

conducted with varying ratios of training-testing 

sets, and the training-testing division of 80%-20% 

demonstrated the highest classification accuracy 

of 91.37% (Shrivastava et al., 2019).  

Lu et al. proposed a novel rice disease 

identification disease method based on 

convolutional neural network (CNN) techniques. 

CNNs were trained to identify 10 rice diseases 

using 500 images portraying healthy and 

diseased rice leaves/stems. The proposed model 

had an accuracy score of 95.48%, much higher 

than that of conventional machine learning 

models such as the BP, SVM, and particle swarm 

optimization (PSO) methods (Lu et al., 2017). 

 

Methods 
Data Description 
This rice leaf diseases dataset, obtained from the 

Shertha locality in Gujarat, India and uploaded on 

Kaggle, contains images of disease-infected rice 

leaves, each belonging to one of three classes i.e. 

Brown Spot, Leaf Smut, and Bacterial Leaf Blight.  

Bacterial blight, caused by Xanthomonas oryzae, 

is one of the most serious diseases in rice. The 

bacteria spreads through ooze droplets on lesions 

of infected plants and normally causes wilting and 

yellowing of leaves. The earlier the disease 

occurs, the higher the yield loss (Rice Knowledge 

Bank, n.d.). Leaf smut, a fungal disease caused 

by fungus Entyloma oryzae, is a widely distributed 

rice disease that produces angular, black spots 

on both sides of the leaves. The fungus is spread 

by airborne spores and over winters in soil, 

particularly in diseased leaf debris. Brown spot is 

a fungal disease caused by fungus Cochliobolus 

miyabeanus that infects coleoptiles, panicle 

branches, glumes and grains. It results in brown, 

circular spots on coleoptile leaves of seedlings, 

indicating plant inability to use nitrogen and 

weakened plants (Groth & Hollier, n.d.).  

With a total of 120 rice leaf disease images in the 

dataset, 40 images account for each class. The 

leaves in these images are derived using a digital 

camera and empirical evaluation for background 

removal and segmentation (Prajapati et al., 

2017). This was a very convenient and accessible 

dataset, for all images had a uniform, clean 

background with one leaf in each image.  

 
GRU 
GRU was proposed by Cho et al. in 2014 and its 

architecture is similar to long short term 

memory(LSTM). LSTM was developed to solve 

the existing problem of recurrent neural 

network(RNN). RNN suffers from a vanishing 

gradient problem; first received information has a 

strong influence on learning and then gradually 

diminishes, eventually failing to influence learning. 

Cell state from the LSTM prevents that drawback 

by storing previous steps of information in a 

memory cell and sending it out.  The cell state 

utilizes three gates : input gate, forget gate and 

output gate to determine whether the information 

is reflected. The GRU consists of two gates : reset 

gate and update gate. The reset gate determines 

whether to combine the new input with previous 

memory and the update gate determines the 

amount of the memory to remember. The overall 

computational process of the GRU is carried out 

with the following formulas (Cho et al., 2014):  

 

rt=σ(Wrht-1,xt+br)      (1) 

ht=tanh(Whrtht-1 ,xt+bh           (2) 

zt=σ(Wzht-1,xt+bz)      (3) 

ht-1=(1-zt)⊙ht-1+ztht     (4)   
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FIGURE 3: Overall architecture of GRU. 

 

Convolutional Neural Network 
Deep neural networks have a limitation that if it 

gets image data as input, it should flatten the input 

image. It means transferring the three dimensions 

into one dimension. The input layer of the 

convolutional neural network (CNN) gets the 

image in three dimensions, and the shape of the 

output is also three dimensional data. Then, the 

output is passed to the next layer. CNN consists 

of three particular layers, which are convolution 

layer, pooling layer, and fully connected layer. 

Convolution layer, applies a filter to the input 

image, and the filter, which is also known as 

kernel, passes through the input image and then 

makes the feature map as output. In technical 

terms, pooling reduces the amount of data 

processed in turn. This process can significantly 

reduce the total number of parameters in the 

model. The pooling includes Max-Pooling and 

Average-Pooling, which is the method of finding 

the maximum value in the area, and Average-

Pooling is the method of calculating the average 

value of the area. Fully connected layer is also 

known as a deep neural network and its role is to 

classify the labels. For binary classification, 

sigmoid function is used for the activation function 

and for the multi label classification, soft max is 

utilized (Albawi et al., 2017). 

 
 
 

 
FIGURE 4: Overall architecture of CNN 

 
MobileNet 
MobileNet is a pretrained network, which is 

trained by the large dataset named imagenet. 

MobileNet utilized the Depthwise separable 

convolution to make the model lighter. The reason 

why MobileNet focused on lightning is to apply the 

deep learning models to low memory 

environments such as mobile phones or 

embedded systems. MobileNet utilizes an 

outstanding convolution method, which is 

depthwise separable convolution.  Depthwise 

convolution produces a feature map for each 

input channel by performing one 3x3 conv filter 

operation. Pointwise convolution adjusts the 

number of channels generated by Depthwise 

convolution to 1x1conv. Depthwise separable 

convolution is the application of pointwise 

convolution after depthwise convolution. 

Depthwise separable convolution considers both 

spatial feature and channel-wise feature to lighten 

the model (Howard et al., 2017). 

 

Proposed Model 
Our proposed model consists of MobileNet and 

bidirectional GRU(Bi-GRU). MobileNet draws out 

the features from the input image and passes the 

output to the Bi-GRU. We utilize the Bi-GRU 

instead of the fully connected network because 

prior research had shown that combining CNN 

and other deep learning networks such as long 

short term memory (LSTM), recurrent neural 

network (RNN), and GRU showed better 

classification performance (Gu et al., 2018, p. 

774-784).  Furthermore, we implemented the 

bidirectional GRU to train the whole parameters 

more efficiently. 
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FIGURE 5: Summary of the MobileNet 

architecture 

 

Results 

The deep-learning software library Keras was 

used to calculate and evaluate the performances 

of the models. Using Google Colab along with 

GPU as the hardware accelerator, the rice leaf 

diseases dataset was imported onto Google Drive 

and mounted onto Google Colab. The 

performance of each algorithm for rice leaf 

disease classification was measured and 

evaluated in terms of accuracy, and a 

comparative study analysis of the performance 

was conducted. Figure 7 shows the average 

accuracy scores of different performing models. 

The best performing model was MobileNet+Bi-

GRU with an accuracy score of 87.24%. The 

poorest performing model was ResNet101 with an 

accuracy score of 33.33%.  

 

The Figure 8 graphs display that initially, although 

the accuracy was relatively low and loss was 

relatively high, upon increasing the number of 

epochs, the loss notably decreased while the 

accuracy increased. The greater the accuracy 

and smaller the loss, the better the classifier 

models are at modeling the correlations between 

the inputs and output targets with fewer errors.  

 

FIGURE 7: Comparison of performance scores for 

each algorithm 

 

RGB colorized heatmaps were created for the 

three rice leaf disease images, i.e. Brown Spot, 

Leaf Smut, and Bacterial, to colorize the intensity 

of the heatmap and identify the area in each leaf 

in which the disease was most dispersed. From a 

color scale of purple to red exhibiting lower to 

higher intensity of disease dispersal, performing 

heatmaps allowed for a more specific and 

accurate identification of the leaf’s location in 

which each disease was found. The heatmap for 

the Brown Spot and Bacterial rice leaf disease 

image indicated that the inner center of the rice 

leaf was most infected with the disease, whereas 

the heatmap for the Leaf Smut rice leaf disease 

image indicated that the top center half was most 

infected with the disease. Areas depicted with 

lower color intensity level such as blue or purple 

indicated areas of less infection by each disease. 
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FIGURE 8: Accuracy and loss graph for training 

and validation set 

 

Discussions 

Principle Finding 
After evaluating the performances (accuracy 

scores) of the eight different CNN models, i.e. 

MobileNet+Bi-GRU, Inception V3, Vgg16, Vgg19, 

MobileNet, DenseNet121, ResNet101, and 

NASNetMobile, to determine the best performing 

model for identification of rice leaf diseases, it was 

revealed that performances from best to worst 

were MobileNet+Bi-GRU, Inception V3, 

MobileNet and NasNetMobile, DenseNet, Vgg19, 

Vgg16, ResNet101, in that order. Overall, among 

all the CNN models, MobileNet+Bi-GRU 

demonstrated the best performance with the 

highest accuracy score of 87.24%. 

 

Our accuracy score of the best performing model 

(MobileNet+Bi-GRU), 87.24%, is relatively high 

compared to other related works. For example, 

when Burhan et al. performed five different deep 

learning models for multiclass rice leaf disease 

classification, the accuracy score of his best 

performing model (ResNet50) was 75.0% 

(Burhan et al., 2020). This may be because the 

images in our dataset consisted of more clear, 

unshadowed images contributing to higher 

efficiency and reliability of the results, compared 

to many other related works utilizing indistinct, 

shadowed rice leaf images.  

 

 
FIGURE 9: Heatmap of Brown Spot rice leaf 

disease image 

 

 
FIGURE 10: Heatmap of Leaf Smut rice leaf 

disease image 

 

 
FIGURE 11: Heatmap of Bacterial rice leaf 

disease image 

  

Limitations 

One limiting factor in this Indian dataset was its 

small size. This dataset consisted of 120 images 

of disease infected rice leaves, with only 40 

images in each class. With more images to 

represent each class in the dataset, the model 

could extract each class’ features more precisely, 

possibly increasing the accuracy scores for the 

performing models. 
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Another limitation of the dataset was the fact that 

out of the many more rice leaf diseases found in 

rice crops, only three types of rice leaf diseases 

(brown spot, leaf smut, and bacterial) were 

identified. Although these three may have been 

the most prominent ones found in the area in 

which this dataset was collected, the Shertha rice 

field in Gujarat, India, many more types of rice leaf 

diseases such as eyespot and sheath rot could be 

included in the dataset for broader application.  

In this study, the accuracy scores did not go over 

the score of 90(%), possibly because of the small 

size of the dataset or the limited number of rice 

leaf diseases identified in the dataset. This limited 

the ability of the models to classify the rice leaf 

disease images into their respective classes with 

accuracy and precision. 

Finally, only image classification was performed 

with the images in this dataset, limiting us to 

classification of what was contained in each 

image. An improvement would be to perform 

object detection as the next step, helping specify 

the location and identify the object in each image 

more thoroughly and quickly. This would 

especially be convenient when using a mobile 

application, for images uploaded into the 

application could be processed and checked in 

real time for fast and efficient classification of rice 

leaf diseases for farmers. 

 

Conclusions 

In this paper, deep learning techniques were 

utilized to classify rice leaf diseases. Eight distinct 

CNN models were applied to the rice leaf diseases 

dataset from Shertha in Gujarat, India. The 

experiments were conducted by portioning the 

dataset into a training-testing ratio of 70%-30%. 

The best proposed model, MobileNet+Bi-GRU, 

was able to classify rice leaf diseases with a 

classification accuracy score of 87.24%, whereas 

the worst performing model, ResNet101, was 

able to classify rice leaf diseases with a 

classification accuracy score of 33.33%. With a 

larger dataset constituted of various types of rice 

leaf diseases globally found, MobileNet+Bi-GRU 

with a 70%-30% training-testing ratio could be a 

remarkably resourceful model to deploy for rice 

leaf disease classification in rice fields.  

 

With the statistical analysis of the performances 

conducted in this study, we can conclude that 

applying deep learning algorithms to rice leaf 

disease classification and digital agriculture as a 

whole is a potential solution to decrease rice loss 

and increase global rice productivity to meet the 

increasing global rice demand. This approach can 

also be further incorporated into a mobile 

application for farmers, especially in developing 

countries with poor crop management 

technology. Deep neural networks are often 

criticized for being a black box model which 

makes the process between the input and output 

untraceable, thereby limiting the practicality when 

applied to applications. However, this study 

overcame that limitation by utilizing Gradient-

weighted Class Activation Mapping (Grad-CAM) 

to better understand the model’s predictions and 

facilitate the applicability to agriculture. The 

application could scan images of rice crops and 

not only detect diseases that may have infected 

the crops but also identify the specific area of 

infection, establishing advanced agricultural 

technology. With digital agriculture in its nascent 

stage today, it is crucial that more researchers 

implement artificial intelligence to more effectively 

address problems in the agricultural industry. 
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