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Abstract – The Euler line which was discovered in 1763 

by Swiss mathematician Leonhard Euler, is a line that 

goes through the orthocenter, the centroid and the 

circumcenter of a non-equilateral triangle. Moreover, 

the distance between the orthocenter and the centroid is 

always double the distance between the centroid and 

circumcenter. This paper aims at finding the length of 

segment of Euler line that lies inside of a non-right 

scalene triangle if the length of its three sides are given. 

This paper aims at deriving two approaches to find the 

length of portion of Euler line that lies inside of a scalene 

non-right triangle. As a result of the approaches, this 

papers contributes by providing formulas that can be 

used for any scalene non-right triangle. 
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INTRODUCTION 

       Around 250 years ago, Swiss mathematician and 

physicist, Leonhard Euler, showed that in any non-

equilateral triangle, the orthocenter, circumcenter, and 

centroid are collinear and the line which passes from these 

three points is called Euler line of the triangle.  

 

Euler line in different types of triangles 

There is no Euler line in an equilateral triangle as the 

orthocenter, circumcenter, and centroid of the triangle 
coincide. The Euler line of an isosceles triangle coincides 

with axis of symmetry of that triangle. In a right triangle, the 

Euler line coincides with the median to the hypotenuse. For 

an acute angled triangle, centroid, circumcenter and 

orthocenter lie in the interior of the triangle. For an obtuse 

angled triangle, the centroid lies in the interior while the 

orthocenter and circumcenter lie in the exterior of the 

triangle. 

 

Application of Euler line 

An important application of Euler line is that information 

about any one of the centroid, orthocenter, and circumcenter 
can be derived from the information of other two in a 

triangle.  

 

Motivation for this paper 

It was when I was studying Law of Cosines that it occurred 

to me that if an angle of a triangle can be expressed in terms 

of three sides of a triangle, then one can also express the 

length of portion of Euler line inside a triangle in terms of 

three sides of a triangle. 

I did further study and came up with formulas to derive the 

length of portion of Euler line that lies inside of a non-
equilateral triangle using known results. 

 

Scope of this paper 

Formulas for finding the length of portion of Euler line that 

lies inside of different types of triangles are given in the 

following table. 

 

Type of triangle 

based on sides 

Type of triangle 

based on angles 

Formula for 

length of portion 

of Euler line that 

lies inside of a 

triangle 

 

Equilateral 

Acute 
Euler line does 

not exist 

 

Right 

Right equilateral 

triangle does not 

exist 

Obtuse 

Obtuse 

equilateral 

triangle does not 

exist 

Isosceles 

Acute 
Length of median 

to base* 

Right 
Length of median 

to hypotenuse# 

Obtuse 
Length of median 

to base* 
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Scalene 

Acute 
Will be derived 

in this paper 

Right 
Length of median 

to hypotenuse# 

Obtuse 
Will be derived 
in this paper 

 

*In isosceles triangle, length of median to base (unequal 

side of isosceles triangle) is the length of portion of Euler 

line that lies inside of a triangle. 
#Length of median to hypotenus, whose length is half of 

hypotenus, is the length of portion of Euler line that lies 

inside of a triangle. 

 

In this paper, we will cover derivation of formulas for 

following two types of triangle –  

I. For acute scalene triangle 
II. For obtuse scalene triangle 

 

Notations used in this paper 

Let us consider a scalene Δ ABC in which e is the Euler line 

which intersects two sides of a triangle at points P and Q. 
AN, BE and CL are altitudes on BC, AC and AB 

respectively which intersects each other at orthocenter, H. 

AM is median to BC and CS is median to AB which 

intersects each other at centroid, G. 

Let BC=a, AC=b, AB=c, ∠𝐴=A, ∠𝐵=B and ∠𝐶=C. 

  

 

 

 

 

 

 

 

 

 

 

In order to derive the formulas, we will use the following 

known results: 
i. Apollonius’s Theorem [1]: 

𝐴𝐵2 + 𝐴𝐶2 = 2(𝐴𝑀2 + 𝐵𝑀2) 
ii. Centroid Theorem [2]:  

𝐴𝐺 =
2

3
𝐴𝑀 

 

 

iii. Law of Sines [3]:  
𝑎

sin 𝐴
=

𝑏

sin𝐵
=

𝑐

sin 𝐶
 

iv. Law of Cosines [4]: 

𝑐2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 cos𝐶 
 

 
Figure 2: Euler line in acute triangle 

 
Figure 3: Euler line in obtuse triangle 

 

In figure 2 and 3, 𝑃𝑄 ⃡     is the Euler line of triangle, which 

passes through orthocenter, H, centroid, G, and 

circumcenter, O.  

These points have a unique property, 𝐻𝐺 = 2𝐺𝑂 [6]. 
 

I. DERIVATION OF FORMULA FOR ACUTE 

SCALENE TRIANGLE 

Let Δ ABC be acute triangle. 

 

 

 

 

 

 

 

 

C B 

A 

G 
H P 

Q 

e 

M N 

E 

Figure 1 

L 
S 

G 
H 

O 

O 

G 

H 

P 

Q 

P 

Q 

C B 

A 

G 

H 

P 

Q 

e 

M N 

E 

Figure 4 



LENGTH OF PORTION OF EULER LINE INSIDE A TRIANGLE 

 

  September 19th-20th, Virtual 

 International Young Researchers’ Conference 2020 

 3 

By Law of Cosines, 

∠𝐴 = 𝑐𝑜𝑠−1 (
𝑏2 + 𝑐2 − 𝑎2

2𝑏𝑐
)   

∠𝐵 = 𝑐𝑜𝑠−1 (
𝑎2 + 𝑐2 − 𝑏2

2𝑎𝑐
) 

∠𝐶 = 𝑐𝑜𝑠−1 (
𝑎2 + 𝑏2 − 𝑐2

2𝑎𝑏
) 

By Apollonius’s Theorem, 

                    𝐴𝑀 =
1

2
√2𝑐2 + 2𝑏2 − 𝑎2                             (1) 

By Centroid Theorem, 

𝐴𝐺 =
2

3
𝐴𝑀 

                ∴ 𝐴𝐺 =
1

3
√2𝑐2 + 2𝑏2 − 𝑎2                                  (2) 

For Δ𝐴𝑀𝐶, by Law of Cosines, 

∠MAC = cos−1 (
AM2 + b2 − (

a

2
)

2

2 ∙ AM ∙ b
)                                  (3) 

In eqn. (3), ∠MAC is an acute angle. 

Also, ∠𝑁𝐴𝐶 = 90° − ∠𝐶 

 ∠𝑀𝐴𝑁 = ∠𝐺𝐴𝐻 = ∠𝑀𝐴𝐶 − ∠𝑁𝐴𝐶                                (4) 

     sin 𝐵 =
𝐴𝑁

𝑐
 

∴ 𝐴𝑁 = 𝐴𝐻 + 𝐻𝑁 = 𝑐 ∙ sin𝐵                                               (5) 

 

For ΔHAE,                   cos∠𝐻𝐴𝐸 =
𝐴𝐸

𝐴𝐻
 

∴ 𝐴𝐻 =
𝐴𝐸

cos∠𝐻𝐴𝐸
                                                                (5.1) 

For ΔABE,                   cos𝐴 =
𝐴𝐸

𝑐
 

∴ 𝐴𝐸 = 𝑐 ∙ cos𝐴                                                                    (5.2) 
 

From (5.1) and (5.2), 

𝐴𝐻 =
𝑐 ∙ cos𝐴

cos∠𝐻𝐴𝐸
                                                                    (5.3) 

 

For ΔANC,          ∠𝑁𝐴𝐶 = ∠𝐻𝐴𝐸 = 90° − ∠𝐶 

∴  cos∠𝐻𝐴𝐸 = cos(90° − ∠𝐶) 

∴  cos∠𝐻𝐴𝐸 = sin 𝐶 
Therefore, from (5.3), 

𝐴𝐻 =
𝑐 ∙ cos𝐴

sin C
                                                                       (5.4) 

For ΔHBN,                   tan ∠𝐻𝐵𝑁 =
𝐻𝑁

𝐵𝑁
 

∴ 𝐻𝑁 = 𝐵𝑁 ∙ tan ∠𝐻𝐵𝑁                                                      (5.5) 

For ΔBEC,                  ∠𝐻𝐵𝑁 = 90° − ∠𝐶 

∴ tan ∠𝐻𝐵𝑁 = cot 𝐶 

∴ tan∠𝐻𝐵𝑁 =
cos 𝐶

sin 𝐶
 

Therefore, from (5.5), 

𝐻𝑁 = 𝐵𝑁 ∙
cos𝐶

sin𝐶
                                                                   (5.6) 

For ΔABN,                 cos 𝐵 =
𝐵𝑁

𝑐
 

∴ 𝐵𝑁 = 𝑐 ∙ cos 𝐵 
Therefore, from (5.6), 

𝐻𝑁 = 𝑐 ∙ cos 𝐵 ∙
cos𝐶

sin 𝐶
                                                          (5.7) 

 

From (5.4) and (5.7), 

𝐴𝐻

𝐻𝑁
=

𝑐∙cos 𝐴

sin 𝐶

𝑐 ∙ cos𝐵 ∙
cos 𝐶

sin 𝐶

 

∴ 
𝐴𝐻

𝐻𝑁
=

cos𝐴

cos 𝐵 ∙ cos𝐶
 

 

∴ 
𝐴𝐻

cos 𝐴
=

𝐻𝑁

cos𝐵 ∙ cos 𝐶
= 𝑥 

       ∴ 𝐴𝐻 = cos𝐴 ∙ 𝑥  and  𝐻𝑁 = cos𝐵 ∙ cos𝐶 ∙ 𝑥       (5.8) 

𝐴𝐻 + 𝐻𝑁 = 𝑥(cos𝐴 + cos 𝐵 ∙ cos𝐶) 

But            𝐴𝐻 + 𝐻𝑁 = 𝑐 ∙ sin 𝐵                              From (5)      
    

So,       𝑥(cos𝐴 + cos𝐵 ∙ cos 𝐶) = 𝑐 ∙ sin 𝐵 

∴ 𝑥 =
𝑐 ∙ sin 𝐵

cos𝐴 + cos 𝐵 ∙ cos𝐶
 

But  𝐴𝐻 = cos 𝐴 ∙ 𝑥                                               From (5.8)                                       

∴ 𝐴𝐻 =
𝑐 ∙ sin𝐵 ∙ cos𝐴

cos 𝐴 + cos𝐵 ∙ cos𝐶
                                                (6) 

 

For Δ𝐺𝐴𝐻, by Law of Cosines, 

𝐺𝐻 = √𝐴𝐺2 + 𝐴𝐻2 − 2 ∙ AG ∙ AH ∙ cos∠GAH                  (7) 

 

∠𝐴𝐺𝐻 = 𝑐𝑜𝑠−1 (
𝐴𝐺2 + 𝐺𝐻2 − 𝐴𝐻2

2 ∙ 𝐴𝐺 ∙ 𝐺𝐻
)                               (8)  

 

For ΔAGQ, ∠𝐺𝐴𝑄 = ∠𝑀𝐴𝐶, ∠𝐴𝐺𝑄 = ∠𝐴𝐺𝐻 

 ∠𝐴𝑄𝐺 = 180° − ∠𝐺𝐴𝑄 − ∠𝐴𝐺𝑄                                         (9) 

 

By Law of Sines, 
𝐺𝑄

sin∠𝐺𝐴𝑄
=

𝐴𝐺

sin ∠𝐴𝑄𝐺
 

∴ 𝑮𝑸 = 
𝐴𝐺 ∙ sin ∠𝐺𝐴𝑄

sin ∠𝐴𝑄𝐺
                                                        (10) 

 

For Δ𝐴𝐺𝑃, ∠𝐴𝐺𝑃 = 180° − ∠𝐴𝐺𝑄 

∠𝑃𝐴𝐺 = ∠𝐴 − ∠𝐺𝐴𝑄                                                            (11) 
 

∠𝐴𝑃𝐺 = 180° − ∠𝐴𝐺𝑃 − ∠𝑃𝐴𝐺 

              = 180° − (180° − 𝐴𝐺𝑄) − (∠𝐴 − ∠𝐺𝐴𝑄) 

∴ ∠𝐴𝑃𝐺 = ∠𝐴𝐺𝑄 + ∠𝐺𝐴𝑄 − ∠𝐴                                       (12) 
 

For Δ𝐴𝐺𝑃, by Law of Sines, 
𝑃𝐺

sin∠𝑃𝐴𝐺
=

𝐴𝐺

sin ∠𝐴𝑃𝐺
 

 

∴ 𝑷𝑮 =
𝐴𝐺 ∙ sin ∠𝑃𝐴𝐺

sin∠𝐴𝑃𝐺
                                                         (13) 

 

From (10) and (13), 

 

𝑃𝐺 + 𝐺𝑄 =
𝐴𝐺 ∙ sin ∠𝑃𝐴𝐺

sin∠𝐴𝑃𝐺
+

𝐴𝐺 ∙ sin ∠𝐺𝐴𝑄

sin ∠𝐴𝑄𝐺
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∴ PQ = AG ∙ [
sin(∠A − ∠GAQ)

sin(∠AGQ + ∠GAQ − ∠A)

+
sin(∠GAQ)

sin(180° − ∠GAQ − ∠AGQ)
] 

Let AM=m, GH=d and AH=n. Using eqns. (1) to (13), 

𝑷𝑸

=
𝟐

𝟑
𝒎

∙

[
 
 
 
 
 𝒔𝒊𝒏(∠𝑨 − {𝒄𝒐𝒔−𝟏 (

𝒎𝟐+𝒃𝟐−(
𝒂

𝟐
)
𝟐

𝟐∙𝒎∙𝒃
)})

𝒔𝒊𝒏(𝒄𝒐𝒔−𝟏 (
(
𝟐

𝟑
𝒎)

𝟐
+𝒅𝟐−𝒏𝟐

𝟒

𝟑
𝒎∙𝒅

) + 𝒄𝒐𝒔−𝟏 (
𝒎𝟐+𝒃𝟐−(

𝒂

𝟐
)
𝟐

𝟐∙𝒎∙𝒃
) − ∠𝑨)

+

𝒔𝒊𝒏(𝒄𝒐𝒔−𝟏 (
𝒎𝟐+𝒃𝟐−(

𝒂

𝟐
)
𝟐

𝟐∙𝒎∙𝒃
))

𝒔𝒊𝒏 (𝒄𝒐𝒔−𝟏 (
𝒎𝟐+𝒃𝟐−(

𝒂

𝟐
)
𝟐

𝟐∙𝒎∙𝒃
) + 𝒄𝒐𝒔−𝟏 (

(
𝟐

𝟑
𝒎)

𝟐
+𝒅𝟐−𝒏𝟐

𝟒

𝟑
𝒎∙𝒅

))
]
 
 
 
 
 

 

 

This formula is derived with respect to Figure 4. 

If three sides of an acute scalene triangle are given, using 
eqns. (1) to (13) and the final formula, we can find the 

length of portion of Euler line inside any acute scalene 

triangle. 

 

Now we will derive formula for obtuse scalene triangle. 

 

II. DERIVATION OF FORMULA FOR OBTUSE 

SCALENE TRIANGLE 

 Let Δ ABC be obtuse triangle.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                               

By Law of Cosines, 

∠𝐴 = 𝑐𝑜𝑠−1 (
𝑏2 + 𝑐2 − 𝑎2

2𝑏𝑐
)   

∠𝐵 = 𝑐𝑜𝑠−1 (
𝑎2 + 𝑐2 − 𝑏2

2𝑎𝑐
) 

∠𝐶 = 𝑐𝑜𝑠−1 (
𝑎2 + 𝑏2 − 𝑐2

2𝑎𝑏
) 

By Apollonius’s Theorem,  

 𝐶𝑆 =
1

2
√2𝑏2 + 2𝑎2 − 𝑐2                                                     (14) 

 

By Centroid Theorem, 

𝐶𝐺 =
2

3
𝐶𝑆 

∴ 𝐶𝐺 =
1

3
√2𝑏2 + 2𝑎2 − 𝑐2                                                 (15) 

 

For ΔASC, by Law of Cosines, 

∠𝑃𝐶𝐺 = ∠𝐴𝐶𝑆 = 𝑐𝑜𝑠−1 (
𝑏2 + 𝐶𝑆2 − (

𝑐

2
)

2

2 ∙ 𝑏 ∙ 𝐶𝑆
)               (16)  

where ∠𝐴𝐶𝑆 is an acute angle. 

 

For Δ𝐴𝐿𝐶, 
∠𝐴𝐶𝐿 = ∠𝐴 − 90°                                                                 (17) 

 

∠𝐻𝐶𝐺 = ∠𝐴𝐶𝐿 + ∠𝐴𝐶𝑆                                                      (18) 

 

For Δ𝐴𝐿𝐶, 

cos ∠𝐴𝐶𝐿 =
𝐿𝐶

𝑏
 

From (17), 

𝐿𝐶 = 𝑏 ∙ cos(∠𝐴 − 90°)                                                      (19) 
 

Again for Δ𝐴𝐿𝐶, 

sin∠𝐴𝐶𝐿 =
𝐴𝐿

𝑏
 

Again from (17),  

𝐴𝐿 = 𝑏 ∙ sin(∠𝐴 − 90°)                                                      (20) 

 

For Δ𝐻𝐴𝐿, 

∠𝐻𝐴𝐿 = ∠𝐵𝐴𝑁 = 90° − ∠𝐵                                              (21) 
 

Also, 

tan∠𝐻𝐴𝐿 =
𝐻𝐿

𝐴𝐿
 

∴  𝐻𝐿 = 𝐴𝐿 ∙ tan∠𝐻𝐴𝐿 
 

From (20) and (21), 

𝐻𝐿 = 𝑏 ∙ sin(∠𝐴 − 90°) ∙ tan(90° − ∠𝐵)                      (22) 

 

For Δ𝐻𝐺𝐶,                    𝐻𝐶 = 𝐻𝐿 + 𝐿𝐶 

 

From (19) and (22), 

E 

H 

L 

A P 

G 

Q N 

S 

B C 
Figure 5 

e 
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𝐻𝐶 = [𝑏 ∙ sin(∠𝐴 − 90°) ∙ tan(90° − ∠𝐵)]
+ [𝑏 ∙ cos(∠𝐴 − 90°)]                           (23) 

By Law of Cosines, 

𝐻𝐺 = √𝐻𝐶2 + 𝐶𝐺2 − 2 ∙ 𝐻𝐶 ∙ 𝐶𝐺 ∙ cos∠𝐻𝐶𝐺              (24) 
By Law of Sines, 

sin∠𝐻𝐺𝐶

𝐻𝐶
=

sin ∠𝐻𝐶𝐺

𝐻𝐺
 

 

∴  sin∠𝐻𝐺𝐶 =
HC ∙ sin ∠𝐻𝐶𝐺

𝐻𝐺
 

Since ∠𝐻𝐺𝐶 is obtuse, 

∠𝐻𝐺𝐶 = ∠𝑃𝐺𝐶 = 180° − sin−1 (
HC ∙ sin ∠𝐻𝐶𝐺

𝐻𝐺
) 

For Δ𝑃𝐺𝐶, 

∠𝐺𝑃𝐶 = 180° − ∠𝑃𝐶𝐺 − ∠𝑃𝐺𝐶                                        (26) 

 

By Law of Sines, 
𝑃𝐺

sin ∠𝑃𝐶𝐺
=

𝐶𝐺

sin ∠𝐺𝑃𝐶
 

 

∴ 𝑷𝑮 =
𝐶𝐺 ∙ sin ∠𝑃𝐶𝐺

sin ∠𝐺𝑃𝐶
                                                         (27) 

 

For Δ𝐶𝑄𝐺, 

∠𝐶𝐺𝑄 = 180° − ∠𝑃𝐺𝐶                                                         (28) 

 

∠𝐺𝐶𝑄 = ∠𝐶 − ∠𝑃𝐶𝐺                                                            (29) 

 

∠𝐺𝑄𝐶 = 180° − ∠𝐶𝐺𝑄 − ∠𝐺𝐶𝑄 

= 180° − (180° − ∠𝑃𝐺𝐶) − (∠𝐶 − ∠𝑃𝐶𝐺) 

∴ ∠𝐺𝑄𝐶 = ∠𝑃𝐺𝐶 + ∠𝑃𝐶𝐺 − ∠𝐶                                        (30) 

 

By Law of Sines, 
𝐺𝑄

sin ∠𝐺𝐶𝑄
=

𝐶𝐺

sin ∠𝐺𝑄𝐶
 

 

∴ 𝑮𝑸 =
𝐶𝐺 ∙ sin ∠𝐺𝐶𝑄

sin ∠𝐺𝑄𝐶
                                                         (31) 

 
From (27) and (31), 

 

𝑃𝐺 + 𝐺𝑄 =
𝐶𝐺 ∙ sin ∠𝑃𝐶𝐺

sin∠𝐺𝑃𝐶
+

𝐶𝐺 ∙ sin∠𝐺𝐶𝑄

sin ∠𝐺𝑄𝐶
 

 

∴ 𝑃𝑄 = 𝐶𝐺 ∙ [
sin ∠𝑃𝐶𝐺

sin ∠𝐺𝑃𝐶
+

sin ∠𝐺𝐶𝑄

sin∠𝐺𝑄𝐶
]  

 

∴ 𝑃𝑄 = 𝐶𝐺 ∙ [
sin ∠PCG

sin(180° − ∠PCG − ∠PGC)

+
sin(∠C − ∠PCG)

sin(∠PGC + ∠PCG − ∠C)
] 

 

Let CS=m, HG=d and ∠HCG = θ. Using eqns. (14) to (31), 

𝑷𝑸

=
𝟐

𝟑
𝒎

∙

[
 
 
 
 
 𝒔𝒊𝒏 {𝒄𝒐𝒔−𝟏 (

𝒃𝟐+𝒎𝟐−(
𝒄

𝟐
)
𝟐

𝟐∙𝒃∙𝒎
)}

𝒔𝒊𝒏(𝒔𝒊𝒏−𝟏 (
𝑯𝑪∙𝒔𝒊𝒏 𝜽

𝒅
) − 𝒄𝒐𝒔−𝟏 (

𝒃𝟐+𝒎𝟐−(
𝒄

𝟐
)

𝟐

𝟐∙𝒃∙𝒎
))

+

𝒔𝒊𝒏(∠𝑪 − 𝒄𝒐𝒔−𝟏 (
𝒃𝟐+𝒎𝟐−(

𝒄

𝟐
)

𝟐

𝟐∙𝒃∙𝒎
))

𝒔𝒊𝒏 (𝟏𝟖𝟎° − 𝒔𝒊𝒏−𝟏 (
𝑯𝑪∙𝒔𝒊𝒏 𝜽

𝒅
) + 𝒄𝒐𝒔−𝟏 (

𝒃𝟐+𝒎𝟐−(
𝒄

𝟐
)
𝟐

𝟐∙𝒃∙𝒎
) − ∠𝑪)

]
 
 
 
 
 

 

 

 

This formula is derived with respect to Figure 5. 

If three sides of an obtuse scalene triangle are given, using 

eqns. (14) to (31) and the final formula, we can find the 

length of portion of Euler line inside any obtuse scalene 

triangle. 

 

RESULTS 
 

     If three sides of any non-right scalene triangle are given, 

then we can find the length of portion of Euler line that lies 

inside of any acute or obtuse scalene triangle using the two 

formulas derived in this paper. 

     Thus, by using these two methods and formulas, we can 

find the length of portion of Euler line which is in the 

interior of any acute or obtuse scalene triangle. 

  

APPLICATIONS 

 
     Finding the length of portion of Euler line that lies inside 

of an acute or obtuse scalene triangle is very useful in 

solving certain complex pure geometry problems. It is also 

useful in the fields of engineering and construction. It also 

has applications in the fields of design. 

 

FUTURE CONSIDERATIONS OF THIS PAPER 

 

1. As the formulas are very long, so if possible, I will 

simplify the formulas. 

2. As there are two formulas for two different types of 

triangles, so if possible, I will make one formula 
for both- acute and obtuse scalene triangle. 
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